Refining the prediction of user satisfaction on chat-based AI applications with unsupervised filtering of rating text inconsistencies.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Royal Society Open Science Pub Date : 2025-02-05 eCollection Date: 2025-02-01 DOI:10.1098/rsos.241687
Hae Sun Jung, Jang Hyun Kim, Haein Lee
{"title":"Refining the prediction of user satisfaction on chat-based AI applications with unsupervised filtering of rating text inconsistencies.","authors":"Hae Sun Jung, Jang Hyun Kim, Haein Lee","doi":"10.1098/rsos.241687","DOIUrl":null,"url":null,"abstract":"<p><p>The swift development of artificial intelligence (AI) technology has triggered substantial changes, particularly evident in the emergence of chat-based services driven by large language models. With the increasing number of users utilizing these services, understanding and analysing user satisfaction becomes crucial for service improvement. While previous studies have explored leveraging online reviews as indicators of user satisfaction, efficiently collecting and analysing extensive datasets remain a challenge. This research aims to address this challenge by proposing a framework to handle extensive review datasets from the Google Play Store, employing natural language processing with machine learning techniques for sentiment analysis. Specifically, the authors collect review data of chat-based AI applications and perform filtering through majority voting of multiple unsupervised sentiment analyses. This framework is a proposed methodology for eliminating inconsistencies between ratings and contents. Subsequently, the authors conduct supervised sentiment analysis using various machine learning and deep learning algorithms. The experimental results confirm the effectiveness of the proposed approach showing improvement in prediction accuracy with cost efficiency. In summary, the findings of this study enhance the predictive performance of user satisfaction for improving service quality in chat-based AI applications and provide valuable insights for the advancement of next-generation chat-based AI services.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"12 2","pages":"241687"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11793979/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.241687","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The swift development of artificial intelligence (AI) technology has triggered substantial changes, particularly evident in the emergence of chat-based services driven by large language models. With the increasing number of users utilizing these services, understanding and analysing user satisfaction becomes crucial for service improvement. While previous studies have explored leveraging online reviews as indicators of user satisfaction, efficiently collecting and analysing extensive datasets remain a challenge. This research aims to address this challenge by proposing a framework to handle extensive review datasets from the Google Play Store, employing natural language processing with machine learning techniques for sentiment analysis. Specifically, the authors collect review data of chat-based AI applications and perform filtering through majority voting of multiple unsupervised sentiment analyses. This framework is a proposed methodology for eliminating inconsistencies between ratings and contents. Subsequently, the authors conduct supervised sentiment analysis using various machine learning and deep learning algorithms. The experimental results confirm the effectiveness of the proposed approach showing improvement in prediction accuracy with cost efficiency. In summary, the findings of this study enhance the predictive performance of user satisfaction for improving service quality in chat-based AI applications and provide valuable insights for the advancement of next-generation chat-based AI services.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Royal Society Open Science
Royal Society Open Science Multidisciplinary-Multidisciplinary
CiteScore
6.00
自引率
0.00%
发文量
508
审稿时长
14 weeks
期刊介绍: Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review. The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信