Crystallographic and computational characterization and in silico target fishing of six aromatic and aliphatic sulfonamide derivatives.

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Royal Society Open Science Pub Date : 2025-02-05 eCollection Date: 2025-02-01 DOI:10.1098/rsos.241402
Anh Van Nguyen, Anh Thi Ngoc Vu, Andrey N Utenyshev, Valeriy Tkachev, Nadezhda Polyanskaya, Dmitriy Shchevnikov, Magrarita Vasil'eva, Hieu Tran-Trung, Xuan Ha Nguyen, Olga V Kovalchukova
{"title":"Crystallographic and computational characterization and <i>in silico</i> target fishing of six aromatic and aliphatic sulfonamide derivatives.","authors":"Anh Van Nguyen, Anh Thi Ngoc Vu, Andrey N Utenyshev, Valeriy Tkachev, Nadezhda Polyanskaya, Dmitriy Shchevnikov, Magrarita Vasil'eva, Hieu Tran-Trung, Xuan Ha Nguyen, Olga V Kovalchukova","doi":"10.1098/rsos.241402","DOIUrl":null,"url":null,"abstract":"<p><p>The molecular and crystal structures of six compounds containing sulfonamide moieties are described. It has been shown that the geometric parameters of the sulfonamide group depend little on the nature of the substituents. Their bond lengths and bond angles remain almost the same and are in good accordance with those known from the literature. In crystals, depending on the type of substituents the molecules exist in the form of either monomers or dimers joined by intermolecular hydrogen bonds involving sulfonamide fragments. Introduction of large substituents into the molecules changes the way of packing of the studied sulfonamides and decreases the number of intermolecular hydrogen bonds in the crystals. The value of this dihedral angle may affect the nature and strength of the intermolecular bonding of the species in crystals. <i>In silico</i> analyses predicted low toxicity and potential enzyme inhibition, along with antiprotozoal properties, suggesting these compounds as candidates against protozoan pathogens. Molecular docking confirmed inhibitory potential against trypanothione reductase, supporting antiprotozoal activity. Consequently, these compounds may serve as promising lead-like molecules for drug development targeting protozoan infections.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"12 2","pages":"241402"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11793975/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.241402","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The molecular and crystal structures of six compounds containing sulfonamide moieties are described. It has been shown that the geometric parameters of the sulfonamide group depend little on the nature of the substituents. Their bond lengths and bond angles remain almost the same and are in good accordance with those known from the literature. In crystals, depending on the type of substituents the molecules exist in the form of either monomers or dimers joined by intermolecular hydrogen bonds involving sulfonamide fragments. Introduction of large substituents into the molecules changes the way of packing of the studied sulfonamides and decreases the number of intermolecular hydrogen bonds in the crystals. The value of this dihedral angle may affect the nature and strength of the intermolecular bonding of the species in crystals. In silico analyses predicted low toxicity and potential enzyme inhibition, along with antiprotozoal properties, suggesting these compounds as candidates against protozoan pathogens. Molecular docking confirmed inhibitory potential against trypanothione reductase, supporting antiprotozoal activity. Consequently, these compounds may serve as promising lead-like molecules for drug development targeting protozoan infections.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Royal Society Open Science
Royal Society Open Science Multidisciplinary-Multidisciplinary
CiteScore
6.00
自引率
0.00%
发文量
508
审稿时长
14 weeks
期刊介绍: Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review. The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信