{"title":"A hybrid swarm intelligent optimization algorithm for antenna design problems.","authors":"Supreet Singh, Harbinder Singh, Nitin Mittal, Gurpreet Kaur Punj, Lalit Kumar, Kinde Anlay Fante","doi":"10.1038/s41598-025-88846-z","DOIUrl":null,"url":null,"abstract":"<p><p>Meta-heuristic optimization algorithms have seen significant advancements due to their diverse applications in solving complex problems. However, no single algorithm can effectively solve all optimization challenges. The Naked Mole-Rat Algorithm (NMRA), inspired by the mating patterns of naked mole-rats, has shown promise but suffers from poor convergence accuracy and a tendency to get trapped in local optima. To address these limitations, this paper proposes an enhanced version of NMRA, called Salp Swarm and Seagull Optimization-based NMRA (SSNMRA), which integrates the search mechanisms of the Seagull Optimization Algorithm (SOA) and the Salp Swarm Algorithm (SSA). This hybrid approach improves the exploration capabilities and convergence performance of NMRA. The effectiveness of SSNMRA is validated through the CEC 2019 benchmark test suite and applied to various electromagnetic optimization problems. Experimental results demonstrate that SSNMRA outperforms existing state-of-the-art algorithms, offering superior optimization capability and enhanced convergence accuracy, making it a promising solution for complex antenna design and other electromagnetic applications.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"4444"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799497/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-88846-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Meta-heuristic optimization algorithms have seen significant advancements due to their diverse applications in solving complex problems. However, no single algorithm can effectively solve all optimization challenges. The Naked Mole-Rat Algorithm (NMRA), inspired by the mating patterns of naked mole-rats, has shown promise but suffers from poor convergence accuracy and a tendency to get trapped in local optima. To address these limitations, this paper proposes an enhanced version of NMRA, called Salp Swarm and Seagull Optimization-based NMRA (SSNMRA), which integrates the search mechanisms of the Seagull Optimization Algorithm (SOA) and the Salp Swarm Algorithm (SSA). This hybrid approach improves the exploration capabilities and convergence performance of NMRA. The effectiveness of SSNMRA is validated through the CEC 2019 benchmark test suite and applied to various electromagnetic optimization problems. Experimental results demonstrate that SSNMRA outperforms existing state-of-the-art algorithms, offering superior optimization capability and enhanced convergence accuracy, making it a promising solution for complex antenna design and other electromagnetic applications.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.