Effect of spermidine intake on overload-induced skeletal muscle hypertrophy in male mice.

IF 2.2 Q3 PHYSIOLOGY
Tomohiro Iwata, Takanaga Shirai, Riku Tanimura, Ryoto Iwai, Tohru Takemasa
{"title":"Effect of spermidine intake on overload-induced skeletal muscle hypertrophy in male mice.","authors":"Tomohiro Iwata, Takanaga Shirai, Riku Tanimura, Ryoto Iwai, Tohru Takemasa","doi":"10.14814/phy2.70209","DOIUrl":null,"url":null,"abstract":"<p><p>Skeletal muscles exhibit high plasticity, such as overload-induced hypertrophy or immobilization-induced atrophy. During sports, skeletal muscle hypertrophy is induced by training to improve performance. Spermidine is a type of polyamine and oral intake of spermidine exerts many beneficial effects on health through various mechanisms, such as promoting autophagy and improving mitochondrial function. In a recent study, we showed that spermidine intake activates mTOR signaling and significantly increases the mean fiber cross-sectional area (CSA) 14 days after injury. This suggests that spermidine promotes the anabolic growth of differentiated muscle (i.e., muscle hypertrophy); however, calorie restriction, which has been reported to have effects on the same molecular mechanisms as spermidine (promoting autophagy and improving mitochondrial function), promotes skeletal muscle regeneration, while inhibiting skeletal muscle hypertrophy. Therefore, we evaluated the effect of spermidine intake on skeletal muscle hypertrophy in mice using a synergistic ablation-induced muscle hypertrophy model. Our results showed that spermidine intake significantly decreased mean myofiber of CSA, but this was not consistent with the change in skeletal muscle wet weight. We also analyzed autophagy, mTOR signaling, inflammation, and mitochondria, but no significant effects of spermidine intake were observed at most protein expression levels. Therefore, spermidine intake does not affect overload-induced skeletal muscle hypertrophy, and even if it does, the effect is suppressive.</p>","PeriodicalId":20083,"journal":{"name":"Physiological Reports","volume":"13 3","pages":"e70209"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11798862/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14814/phy2.70209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Skeletal muscles exhibit high plasticity, such as overload-induced hypertrophy or immobilization-induced atrophy. During sports, skeletal muscle hypertrophy is induced by training to improve performance. Spermidine is a type of polyamine and oral intake of spermidine exerts many beneficial effects on health through various mechanisms, such as promoting autophagy and improving mitochondrial function. In a recent study, we showed that spermidine intake activates mTOR signaling and significantly increases the mean fiber cross-sectional area (CSA) 14 days after injury. This suggests that spermidine promotes the anabolic growth of differentiated muscle (i.e., muscle hypertrophy); however, calorie restriction, which has been reported to have effects on the same molecular mechanisms as spermidine (promoting autophagy and improving mitochondrial function), promotes skeletal muscle regeneration, while inhibiting skeletal muscle hypertrophy. Therefore, we evaluated the effect of spermidine intake on skeletal muscle hypertrophy in mice using a synergistic ablation-induced muscle hypertrophy model. Our results showed that spermidine intake significantly decreased mean myofiber of CSA, but this was not consistent with the change in skeletal muscle wet weight. We also analyzed autophagy, mTOR signaling, inflammation, and mitochondria, but no significant effects of spermidine intake were observed at most protein expression levels. Therefore, spermidine intake does not affect overload-induced skeletal muscle hypertrophy, and even if it does, the effect is suppressive.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiological Reports
Physiological Reports PHYSIOLOGY-
CiteScore
4.20
自引率
4.00%
发文量
374
审稿时长
9 weeks
期刊介绍: Physiological Reports is an online only, open access journal that will publish peer reviewed research across all areas of basic, translational, and clinical physiology and allied disciplines. Physiological Reports is a collaboration between The Physiological Society and the American Physiological Society, and is therefore in a unique position to serve the international physiology community through quick time to publication while upholding a quality standard of sound research that constitutes a useful contribution to the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信