Warming alters non-trophic interactions in soft bottom habitats.

IF 2.3 2区 环境科学与生态学 Q2 ECOLOGY
Simona Laukaityte, Melanie J Bishop, Laura L Govers, Britas D H Klemens Eriksson
{"title":"Warming alters non-trophic interactions in soft bottom habitats.","authors":"Simona Laukaityte, Melanie J Bishop, Laura L Govers, Britas D H Klemens Eriksson","doi":"10.1007/s00442-025-05662-y","DOIUrl":null,"url":null,"abstract":"<p><p>Though there is mounting evidence that climate warming is altering trophic interactions between organisms, its effects on non-trophic interactions remain relatively undocumented. In seagrass systems, the bioturbating activity of infauna influences annual seagrass patch development by influencing seed burial depth and germination success as well as sediment properties. If bioturbation is altered by warming, consequences on seagrass may result. Here, we assessed how heatwaves alter seagrass seed burial depth and germination rates when no bioturbators (control), single bioturbators and mixtures of bioturbators of contrasting feeding activities are present. The three bioturbators manipulated were surface (top 1-2 cm of sediment) biodiffusor, the brown shrimp (Crangon crangon), the shallow (top 3-8 cm) diffusor, the common cockle, (Cerastoderma edule) and the upward (5-15 cm) conveyor, the polychaete, Cappitellidae spp. We applied two temperature treatments: (1) a present-day scenario set at the average summer temperature of seagrass habitat (17ºC); and (2) a heatwave scenario modelled on the maximum recorded temperature (26.6ºC). Under present-day conditions, seed burial was greater in the presence of bioturbators than the control where no infauna was added (42-74% vs. 33 ± 7%, respectively). Cockles had the greatest impact on seed burial amongst all the bioturbators. Under the heatwave scenario, seed burial in the mixed bioturbator treatment increased to match that of the cockle treatment. Cockles and polychaetes elevated the germination rates of buried seeds under present-day temperature, but not under the heatwave scenario. Overall, these results indicate that heatwaves have the potential both to amplify and disrupt non-trophic interactions, with implications for seagrass seed germination.</p>","PeriodicalId":19473,"journal":{"name":"Oecologia","volume":"207 2","pages":"30"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799095/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oecologia","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00442-025-05662-y","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Though there is mounting evidence that climate warming is altering trophic interactions between organisms, its effects on non-trophic interactions remain relatively undocumented. In seagrass systems, the bioturbating activity of infauna influences annual seagrass patch development by influencing seed burial depth and germination success as well as sediment properties. If bioturbation is altered by warming, consequences on seagrass may result. Here, we assessed how heatwaves alter seagrass seed burial depth and germination rates when no bioturbators (control), single bioturbators and mixtures of bioturbators of contrasting feeding activities are present. The three bioturbators manipulated were surface (top 1-2 cm of sediment) biodiffusor, the brown shrimp (Crangon crangon), the shallow (top 3-8 cm) diffusor, the common cockle, (Cerastoderma edule) and the upward (5-15 cm) conveyor, the polychaete, Cappitellidae spp. We applied two temperature treatments: (1) a present-day scenario set at the average summer temperature of seagrass habitat (17ºC); and (2) a heatwave scenario modelled on the maximum recorded temperature (26.6ºC). Under present-day conditions, seed burial was greater in the presence of bioturbators than the control where no infauna was added (42-74% vs. 33 ± 7%, respectively). Cockles had the greatest impact on seed burial amongst all the bioturbators. Under the heatwave scenario, seed burial in the mixed bioturbator treatment increased to match that of the cockle treatment. Cockles and polychaetes elevated the germination rates of buried seeds under present-day temperature, but not under the heatwave scenario. Overall, these results indicate that heatwaves have the potential both to amplify and disrupt non-trophic interactions, with implications for seagrass seed germination.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Oecologia
Oecologia 环境科学-生态学
CiteScore
5.10
自引率
0.00%
发文量
192
审稿时长
5.3 months
期刊介绍: Oecologia publishes innovative ecological research of international interest. We seek reviews, advances in methodology, and original contributions, emphasizing the following areas: Population ecology, Plant-microbe-animal interactions, Ecosystem ecology, Community ecology, Global change ecology, Conservation ecology, Behavioral ecology and Physiological Ecology. In general, studies that are purely descriptive, mathematical, documentary, and/or natural history will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信