Arthur D Stem, Cole R Michel, Peter S Harris, Keegan L Rogers, Matthew Gibb, Carlos A Roncal-Jimenez, Richard Reisdorph, Richard J Johnson, James R Roede, Kristofer S Fritz, Jared M Brown
{"title":"Modulation of the thiol redox proteome by sugarcane ash-derived silica nanoparticles: insights into chronic kidney disease of unknown etiology.","authors":"Arthur D Stem, Cole R Michel, Peter S Harris, Keegan L Rogers, Matthew Gibb, Carlos A Roncal-Jimenez, Richard Reisdorph, Richard J Johnson, James R Roede, Kristofer S Fritz, Jared M Brown","doi":"10.1186/s12989-025-00619-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Chronic kidney disease of unknown etiology (CKDu) is an epidemic which is increasingly prevalent among agricultural workers and nearby communities, particularly those involved in the harvest of sugarcane. While CKDu is likely multifactorial, occupational exposure to silica nanoparticles (SiNPs), a major constituent within sugarcane ash, has gained increased attention as a potential contributor. SiNPs have high potential for generation of reactive oxygen species (ROS), and their accumulation in kidney could result in oxidative stress induced kidney damage consistent with CKDu pathology.</p><p><strong>Methods: </strong>In order to characterize the impact of sugarcane ash derived (SAD) SiNPs on human kidney proximal convoluted tubule (PCT) cells and identify potential mechanisms of toxicity, HK-2 cells were exposed to treatments of either pristine, manufactured, 200 nm SiNPs or SAD SiNPs and changes to cellular energy metabolism and redox state were determined. To determine how the cellular redox environment may influence PCT cell function and toxicity, the redox proteome was examined using cysteine-targeted click chemistry proteomics.</p><p><strong>Results: </strong>Pristine, 200 nm SiNPs induced minimal changes to energy metabolism and proteomic profiles in vitro while treatment with SAD SiNPs resulted in mitochondrial membrane hyperpolarization, inhibited mitochondrial respiration, increased reactive oxygen species generation, and redox proteomic trends suggesting activation of aryl hydrocarbon receptor (AHR) and other signaling pathways with known roles in mitochondrial inhibition and CKD progression.</p><p><strong>Conclusion: </strong>Results suggest that PCT cell exposure to SAD SiNPs could promote glycolytic and fibrotic shifts consistent with CKDu pathology via oxidative stress-mediated disruption of redox signaling pathways.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"22 1","pages":"3"},"PeriodicalIF":7.2000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11800628/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle and Fibre Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12989-025-00619-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Chronic kidney disease of unknown etiology (CKDu) is an epidemic which is increasingly prevalent among agricultural workers and nearby communities, particularly those involved in the harvest of sugarcane. While CKDu is likely multifactorial, occupational exposure to silica nanoparticles (SiNPs), a major constituent within sugarcane ash, has gained increased attention as a potential contributor. SiNPs have high potential for generation of reactive oxygen species (ROS), and their accumulation in kidney could result in oxidative stress induced kidney damage consistent with CKDu pathology.
Methods: In order to characterize the impact of sugarcane ash derived (SAD) SiNPs on human kidney proximal convoluted tubule (PCT) cells and identify potential mechanisms of toxicity, HK-2 cells were exposed to treatments of either pristine, manufactured, 200 nm SiNPs or SAD SiNPs and changes to cellular energy metabolism and redox state were determined. To determine how the cellular redox environment may influence PCT cell function and toxicity, the redox proteome was examined using cysteine-targeted click chemistry proteomics.
Results: Pristine, 200 nm SiNPs induced minimal changes to energy metabolism and proteomic profiles in vitro while treatment with SAD SiNPs resulted in mitochondrial membrane hyperpolarization, inhibited mitochondrial respiration, increased reactive oxygen species generation, and redox proteomic trends suggesting activation of aryl hydrocarbon receptor (AHR) and other signaling pathways with known roles in mitochondrial inhibition and CKD progression.
Conclusion: Results suggest that PCT cell exposure to SAD SiNPs could promote glycolytic and fibrotic shifts consistent with CKDu pathology via oxidative stress-mediated disruption of redox signaling pathways.
期刊介绍:
Particle and Fibre Toxicology is an online journal that is open access and peer-reviewed. It covers a range of disciplines such as material science, biomaterials, and nanomedicine, focusing on the toxicological effects of particles and fibres. The journal serves as a platform for scientific debate and communication among toxicologists and scientists from different fields who work with particle and fibre materials. The main objective of the journal is to deepen our understanding of the physico-chemical properties of particles, their potential for human exposure, and the resulting biological effects. It also addresses regulatory issues related to particle exposure in workplaces and the general environment. Moreover, the journal recognizes that there are various situations where particles can pose a toxicological threat, such as the use of old materials in new applications or the introduction of new materials altogether. By encompassing all these disciplines, Particle and Fibre Toxicology provides a comprehensive source for research in this field.