{"title":"Cost-effective fabrication of submicron-scale patterns enabled by microcontact printing with a pre-strained soft elastomeric stamp.","authors":"Eunhwan Jo, Jaesam Sim","doi":"10.1039/d4na00757c","DOIUrl":null,"url":null,"abstract":"<p><p>While photolithography and e-beam lithography remain the predominant techniques for nanoscale patterning, their high costs and inherent complexity have limited their accessibility for certain applications. Recently, shrink lithography has emerged as a promising technique for reducing pattern dimensions through substrate contraction, offering a simpler and cost-effective alternative to existing methods. In this study, we propose a method combining microcontact printing with a pre-stretched soft elastomeric stamp to achieve scalable pattern reduction. We introduce the pre-stretching and releasing of the Ecoflex-based soft elastomeric stamp in microcontact printing processes, leveraging its excellent stretchability and elasticity. This approach allows for the reduction of the original pattern dimensions by up to 60%. Furthermore, by experimentally quantifying the shrinkage with respect to the applying strain, we characterize the degree of pattern reduction, which offers a promising alternative for fabricating sub-micron scale features, with potential applications in scalable nano-manufacturing.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11791514/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4na00757c","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
While photolithography and e-beam lithography remain the predominant techniques for nanoscale patterning, their high costs and inherent complexity have limited their accessibility for certain applications. Recently, shrink lithography has emerged as a promising technique for reducing pattern dimensions through substrate contraction, offering a simpler and cost-effective alternative to existing methods. In this study, we propose a method combining microcontact printing with a pre-stretched soft elastomeric stamp to achieve scalable pattern reduction. We introduce the pre-stretching and releasing of the Ecoflex-based soft elastomeric stamp in microcontact printing processes, leveraging its excellent stretchability and elasticity. This approach allows for the reduction of the original pattern dimensions by up to 60%. Furthermore, by experimentally quantifying the shrinkage with respect to the applying strain, we characterize the degree of pattern reduction, which offers a promising alternative for fabricating sub-micron scale features, with potential applications in scalable nano-manufacturing.