Identification and Application of the Heptad Repeat Domain in the CPR5 Protein for Enhancing Plant Immunity.

IF 4.8 1区 农林科学 Q1 PLANT SCIENCES
Yuehui Zhang, Yuting Ge, Keke Sun, Leiwen Pan, Zhilin Liang, Ping Wang, Yingfan Cai, Shui Wang
{"title":"Identification and Application of the Heptad Repeat Domain in the CPR5 Protein for Enhancing Plant Immunity.","authors":"Yuehui Zhang, Yuting Ge, Keke Sun, Leiwen Pan, Zhilin Liang, Ping Wang, Yingfan Cai, Shui Wang","doi":"10.1111/mpp.70059","DOIUrl":null,"url":null,"abstract":"<p><p>Plant resistance to pathogens can be significantly enhanced through genetic modification, thereby reducing the reliance on chemical pesticides. CONSTITUTIVE EXPRESSER OF PATHOGENESIS-RELATED GENES 5 (CPR5) serves as a key negative regulator of plant immunity. Here we explored the functional domains of the CPR5 protein with the goal of dampening its activity to bolster plant immunity. Using hexapeptide asparagine-alanine-alanine-isoleucine-arginine-serine (NAAIRS) linker-scanning analysis, we identified a heptad repeat domain (HRD) in the middle region of the CPR5 protein, which is highly conserved across the plant kingdom. The HRD is predicted to form an α-helix structure and acts as an interface for CPR5 dimerization. Intriguingly, overexpression of the HRD in Arabidopsis wild-type plants resulted in a phenotype similar to the cpr5 mutant and led to an enhancement of plant immunity, indicating that the introduced HRDs disrupt the native CPR5 dimers, thereby relieving the suppression of plant immunity. Furthermore, expression of the HRD under the control of a pathogen-inducible promoter significantly improved the resistance of cotton plants to Verticillium dahliae, a destructive wilt pathogen affecting cotton production worldwide. These findings suggest that downregulating CPR5 activity by the pathogen-inducible expression of its HRD could be a promising approach for strengthening plant immunity.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"26 2","pages":"e70059"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11798864/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular plant pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/mpp.70059","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Plant resistance to pathogens can be significantly enhanced through genetic modification, thereby reducing the reliance on chemical pesticides. CONSTITUTIVE EXPRESSER OF PATHOGENESIS-RELATED GENES 5 (CPR5) serves as a key negative regulator of plant immunity. Here we explored the functional domains of the CPR5 protein with the goal of dampening its activity to bolster plant immunity. Using hexapeptide asparagine-alanine-alanine-isoleucine-arginine-serine (NAAIRS) linker-scanning analysis, we identified a heptad repeat domain (HRD) in the middle region of the CPR5 protein, which is highly conserved across the plant kingdom. The HRD is predicted to form an α-helix structure and acts as an interface for CPR5 dimerization. Intriguingly, overexpression of the HRD in Arabidopsis wild-type plants resulted in a phenotype similar to the cpr5 mutant and led to an enhancement of plant immunity, indicating that the introduced HRDs disrupt the native CPR5 dimers, thereby relieving the suppression of plant immunity. Furthermore, expression of the HRD under the control of a pathogen-inducible promoter significantly improved the resistance of cotton plants to Verticillium dahliae, a destructive wilt pathogen affecting cotton production worldwide. These findings suggest that downregulating CPR5 activity by the pathogen-inducible expression of its HRD could be a promising approach for strengthening plant immunity.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular plant pathology
Molecular plant pathology 生物-植物科学
CiteScore
9.40
自引率
4.10%
发文量
120
审稿时长
6-12 weeks
期刊介绍: Molecular Plant Pathology is now an open access journal. Authors pay an article processing charge to publish in the journal and all articles will be freely available to anyone. BSPP members will be granted a 20% discount on article charges. The Editorial focus and policy of the journal has not be changed and the editorial team will continue to apply the same rigorous standards of peer review and acceptance criteria.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信