An adhesive and self-healing ROS-scavenging hydrogel loading with hMSC-derived exosomes for diabetic wound healing

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Yunting Zhang , Yihua Xu , Weitong Hu , Xiaolu Ma , Jingyi Hu , Yuxian Ye , Shengfei Yang , Yawei Yu , Ni Li , Dawei Zheng , Tianyuan Zhang , Hangjuan Lin , Jianqing Gao
{"title":"An adhesive and self-healing ROS-scavenging hydrogel loading with hMSC-derived exosomes for diabetic wound healing","authors":"Yunting Zhang ,&nbsp;Yihua Xu ,&nbsp;Weitong Hu ,&nbsp;Xiaolu Ma ,&nbsp;Jingyi Hu ,&nbsp;Yuxian Ye ,&nbsp;Shengfei Yang ,&nbsp;Yawei Yu ,&nbsp;Ni Li ,&nbsp;Dawei Zheng ,&nbsp;Tianyuan Zhang ,&nbsp;Hangjuan Lin ,&nbsp;Jianqing Gao","doi":"10.1016/j.ijpharm.2025.125315","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetic wounds have garnered significant attention due to excessive reactive oxygen species (ROS), persistent inflammation, and vascular and neural impairments that hinder effective healing. ROS-scavenging hydrogels with phenylborate bonds possess inherent anti-ROS and anti-inflammatory properties, while human mesenchymal stem cell-derived exosomes (hMSC-exos) offer additional anti-inflammatory, pro-angiogenic, and neurogenic benefits, presenting a promising strategy to address these challenges. This study introduces a novel ROS-scavenging hydrogel loaded with hMSC-exos, which exhibits strong adhesion and self-healing capabilities. Upon application to the wound, it interacts with ROS to produce an anti-inflammatory response, concurrently allowing a sustained release of hMSC-exos. <em>In vitro</em> and <em>in vivo</em> experiments have demonstrated that this hydrogel effectively reduces ROS levels, mitigates inflammation, and promotes angiogenesis and neurogenesis, thus enhancing functional skin restoration and accelerating wound healing. In summary, we propose an innovative therapeutic approach for diabetic wound healing by combining ROS-scavenging hydrogels with hMSC-exos, with the potential to significantly benefit patients.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"672 ","pages":"Article 125315"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517325001516","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetic wounds have garnered significant attention due to excessive reactive oxygen species (ROS), persistent inflammation, and vascular and neural impairments that hinder effective healing. ROS-scavenging hydrogels with phenylborate bonds possess inherent anti-ROS and anti-inflammatory properties, while human mesenchymal stem cell-derived exosomes (hMSC-exos) offer additional anti-inflammatory, pro-angiogenic, and neurogenic benefits, presenting a promising strategy to address these challenges. This study introduces a novel ROS-scavenging hydrogel loaded with hMSC-exos, which exhibits strong adhesion and self-healing capabilities. Upon application to the wound, it interacts with ROS to produce an anti-inflammatory response, concurrently allowing a sustained release of hMSC-exos. In vitro and in vivo experiments have demonstrated that this hydrogel effectively reduces ROS levels, mitigates inflammation, and promotes angiogenesis and neurogenesis, thus enhancing functional skin restoration and accelerating wound healing. In summary, we propose an innovative therapeutic approach for diabetic wound healing by combining ROS-scavenging hydrogels with hMSC-exos, with the potential to significantly benefit patients.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.70
自引率
8.60%
发文量
951
审稿时长
72 days
期刊介绍: The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信