Role of Atg3, Atg5 and Atg12 in the crosstalk between apoptosis and autophagy in the posterior silk gland of Bombyx mori.

IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ebru Goncu, Esen Poyraz Tinartas, Busra Gunay, Tugce Ordu, Gamze Turgay Izzetoglu
{"title":"Role of Atg3, Atg5 and Atg12 in the crosstalk between apoptosis and autophagy in the posterior silk gland of Bombyx mori.","authors":"Ebru Goncu, Esen Poyraz Tinartas, Busra Gunay, Tugce Ordu, Gamze Turgay Izzetoglu","doi":"10.1111/imb.12985","DOIUrl":null,"url":null,"abstract":"<p><p>Autophagy is a cellular mechanism that enhances cell survival in response to various stressors, including nutrient deprivation; however, it also plays a pivotal role in the regulation of programmed cell death. This study examined the effects of autophagy-related genes Atg3, Atg5 and Atg12 on apoptosis and autophagy during the degeneration of the posterior silk gland in Bombyx mori, employing RNA interference techniques. Apoptosis-specific markers and autophagic processes were evaluated in both control and treatment groups. The knockdown of all three genes resulted in a significant reduction in autophagy, modifications in the apoptosis process, aberrant expression of p53 and impaired lysosomal function. It was determined that Atg3 is involved in the regulation of intracellular mitochondrial homeostasis. Following the silencing of Atg5, evidence was obtained indicating the gene's role in regulating lysosomal pH. Notably, the loss of Atg3 and Atg5 was associated with an increase in apoptotic markers, whereas the silencing of Atg12 inhibited apoptosis. Elevated levels of the p53 transcription factor following gene silencing suggested a potential interaction between these genes and p53. Our findings further underscore the importance of autophagy-mediated cell death, involving Atg3, Atg5 and Atg12, in the proper progression of degeneration in the posterior silk gland. A comprehensive understanding of the molecular mechanisms that mediate the interaction between apoptosis and autophagy is essential for elucidating their roles in both physiological and pathological contexts.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/imb.12985","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Autophagy is a cellular mechanism that enhances cell survival in response to various stressors, including nutrient deprivation; however, it also plays a pivotal role in the regulation of programmed cell death. This study examined the effects of autophagy-related genes Atg3, Atg5 and Atg12 on apoptosis and autophagy during the degeneration of the posterior silk gland in Bombyx mori, employing RNA interference techniques. Apoptosis-specific markers and autophagic processes were evaluated in both control and treatment groups. The knockdown of all three genes resulted in a significant reduction in autophagy, modifications in the apoptosis process, aberrant expression of p53 and impaired lysosomal function. It was determined that Atg3 is involved in the regulation of intracellular mitochondrial homeostasis. Following the silencing of Atg5, evidence was obtained indicating the gene's role in regulating lysosomal pH. Notably, the loss of Atg3 and Atg5 was associated with an increase in apoptotic markers, whereas the silencing of Atg12 inhibited apoptosis. Elevated levels of the p53 transcription factor following gene silencing suggested a potential interaction between these genes and p53. Our findings further underscore the importance of autophagy-mediated cell death, involving Atg3, Atg5 and Atg12, in the proper progression of degeneration in the posterior silk gland. A comprehensive understanding of the molecular mechanisms that mediate the interaction between apoptosis and autophagy is essential for elucidating their roles in both physiological and pathological contexts.

Atg3、Atg5和Atg12在家蚕后丝腺细胞凋亡和自噬之间的串扰中的作用。
自噬是一种细胞机制,可以提高细胞在各种应激源下的存活率,包括营养剥夺;然而,它在程序性细胞死亡的调控中也起着关键作用。本研究采用RNA干扰技术研究了自噬相关基因Atg3、Atg5和Atg12对家蚕后丝腺退化过程中细胞凋亡和自噬的影响。对对照组和治疗组的细胞凋亡特异性标志物和自噬过程进行评估。这三个基因的敲低导致自噬显著减少、凋亡过程改变、p53异常表达和溶酶体功能受损。我们确定Atg3参与细胞内线粒体稳态的调节。Atg5沉默后,有证据表明该基因在调节溶酶体ph中的作用。值得注意的是,Atg3和Atg5的缺失与凋亡标志物的增加有关,而Atg12的沉默则抑制细胞凋亡。基因沉默后p53转录因子水平升高表明这些基因与p53之间可能存在相互作用。我们的研究结果进一步强调了自噬介导的细胞死亡的重要性,包括Atg3, Atg5和Atg12,在后丝腺退化的正常进展中。全面了解细胞凋亡和自噬之间相互作用的分子机制对于阐明它们在生理和病理环境中的作用至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Insect Molecular Biology
Insect Molecular Biology 生物-昆虫学
CiteScore
4.80
自引率
3.80%
发文量
68
审稿时长
6-12 weeks
期刊介绍: Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins. This includes research related to: • insect gene structure • control of gene expression • localisation and function/activity of proteins • interactions of proteins and ligands/substrates • effect of mutations on gene/protein function • evolution of insect genes/genomes, especially where principles relevant to insects in general are established • molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations • gene mapping using molecular tools • molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信