Better Transcriptomic Stability and Broader Transcriptomic Thermal Response Range Drive the Greater Thermal Tolerance in a Global Invasive Turtle Relative to Native Turtle.

IF 3.5 1区 生物学 Q1 ZOOLOGY
Changyi Zhang, Shufen Jiang, Kenneth B Storey, Wenyi Zhang
{"title":"Better Transcriptomic Stability and Broader Transcriptomic Thermal Response Range Drive the Greater Thermal Tolerance in a Global Invasive Turtle Relative to Native Turtle.","authors":"Changyi Zhang, Shufen Jiang, Kenneth B Storey, Wenyi Zhang","doi":"10.1111/1749-4877.12959","DOIUrl":null,"url":null,"abstract":"<p><p>Greater thermal tolerance of invasive species benefits their survival and spread under extreme climate events, especially under global warming. Revealing the mechanisms underlying the interspecific differences in thermal tolerance between invasive and native species can help understand the invasion process and predict potential invaders. Here, we link the changes in global transcriptomics and antioxidant defense at multiple temperatures with the differences in thermal limits in the juveniles of a successful globally invasive turtle, Trachemys scripta elegans, and a native turtle in China, Mauremys reevesii. The two species show different thermal tolerances and have co-existed in habitats with the risk of overheating. The majority of the transcriptional response to thermal stress is conserved in the two turtle species, including protein folding or DNA damage responses activated under relatively moderate thermal stress and regulation of the cell cycle and apoptosis during severe thermal stress. Greater thermal tolerance of T. scripta elegans can be associated with a more stable global transcriptome during thermal stress, except for necessary stress responses, and a broader thermal range of continuous up-regulation of the core mechanisms promoting survival under thermal stress, mainly protein folding and negative regulation of apoptosis. Under extreme hot conditions, the opposite change trends of genes involved in survival mechanisms during thermal stress between invasive and native turtles can be due to differences in energy turnover. The present study provides insights into the mechanisms of physiological differences between invasive and native species given global transcriptional changes and helps understand successful invasion and predict potential invasive species.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1749-4877.12959","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Greater thermal tolerance of invasive species benefits their survival and spread under extreme climate events, especially under global warming. Revealing the mechanisms underlying the interspecific differences in thermal tolerance between invasive and native species can help understand the invasion process and predict potential invaders. Here, we link the changes in global transcriptomics and antioxidant defense at multiple temperatures with the differences in thermal limits in the juveniles of a successful globally invasive turtle, Trachemys scripta elegans, and a native turtle in China, Mauremys reevesii. The two species show different thermal tolerances and have co-existed in habitats with the risk of overheating. The majority of the transcriptional response to thermal stress is conserved in the two turtle species, including protein folding or DNA damage responses activated under relatively moderate thermal stress and regulation of the cell cycle and apoptosis during severe thermal stress. Greater thermal tolerance of T. scripta elegans can be associated with a more stable global transcriptome during thermal stress, except for necessary stress responses, and a broader thermal range of continuous up-regulation of the core mechanisms promoting survival under thermal stress, mainly protein folding and negative regulation of apoptosis. Under extreme hot conditions, the opposite change trends of genes involved in survival mechanisms during thermal stress between invasive and native turtles can be due to differences in energy turnover. The present study provides insights into the mechanisms of physiological differences between invasive and native species given global transcriptional changes and helps understand successful invasion and predict potential invasive species.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
12.10%
发文量
81
审稿时长
>12 weeks
期刊介绍: The official journal of the International Society of Zoological Sciences focuses on zoology as an integrative discipline encompassing all aspects of animal life. It presents a broader perspective of many levels of zoological inquiry, both spatial and temporal, and encourages cooperation between zoology and other disciplines including, but not limited to, physics, computer science, social science, ethics, teaching, paleontology, molecular biology, physiology, behavior, ecology and the built environment. It also looks at the animal-human interaction through exploring animal-plant interactions, microbe/pathogen effects and global changes on the environment and human society. Integrative topics of greatest interest to INZ include: (1) Animals & climate change (2) Animals & pollution (3) Animals & infectious diseases (4) Animals & biological invasions (5) Animal-plant interactions (6) Zoogeography & paleontology (7) Neurons, genes & behavior (8) Molecular ecology & evolution (9) Physiological adaptations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信