A new score for predicting intracranial hemorrhage in patients using anticoagulant drugs.

IF 2.7 3区 医学 Q2 CLINICAL NEUROLOGY
Frontiers in Neurology Pub Date : 2025-01-22 eCollection Date: 2025-01-01 DOI:10.3389/fneur.2025.1475956
Fuxin Ma, Zhiwei Zeng, Jiana Chen, Chengfu Guan, Wenlin Xu, Chunhua Wang, Jinhua Zhang
{"title":"A new score for predicting intracranial hemorrhage in patients using anticoagulant drugs.","authors":"Fuxin Ma, Zhiwei Zeng, Jiana Chen, Chengfu Guan, Wenlin Xu, Chunhua Wang, Jinhua Zhang","doi":"10.3389/fneur.2025.1475956","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The use of anticoagulants in patients increases the risk of intracranial hemorrhage (ICH). Our aim was to identify factors associated with cerebral hemorrhage in patients using anticoagulants and to develop a predictive model that would provide an effective tool for the clinical assessment of cerebral hemorrhage.</p><p><strong>Methods: </strong>In our study, indications for patients receiving anticoagulation included AF, VTE, stroke/TIA, arteriosclerosis, peripheral vascular diseases (PVD), prosthetic mechanical valve replacement, etc. Data were obtained from the patient record hospitalization system. Logistic regression, area under the curve (AUC), and bar graphs were used to build predictive models in the development cohort. The models were internally validated, analytically characterized, and calibrated using AUC, calibration curves, and the Hosmer-Lemeshow test.</p><p><strong>Results: </strong>This single-center retrospective study included 617 patients treated with anticoagulants. Multifactorial analysis showed that male, leukoaraiosis, high risk of falls, APTT ≥ 45.4 s, and FIB ≥ 4.2 g/L were independent risk factors for cerebral hemorrhage, and <i>β</i>-blockers were protective factors. The model was constructed using these six factors with an AUC value of 0.883. In the validation cohort, the model had good discriminatory power (AUC = 0.801) and calibration power. Five-fold cross-validation showed Kappa of 0.483.</p><p><strong>Conclusion: </strong>Predictive models based on a patient's medical record hospitalization system can be used to identify patients at risk for cerebral hemorrhage. Identifying people at risk can provide proactive interventions for patients.</p>","PeriodicalId":12575,"journal":{"name":"Frontiers in Neurology","volume":"16 ","pages":"1475956"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794049/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fneur.2025.1475956","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: The use of anticoagulants in patients increases the risk of intracranial hemorrhage (ICH). Our aim was to identify factors associated with cerebral hemorrhage in patients using anticoagulants and to develop a predictive model that would provide an effective tool for the clinical assessment of cerebral hemorrhage.

Methods: In our study, indications for patients receiving anticoagulation included AF, VTE, stroke/TIA, arteriosclerosis, peripheral vascular diseases (PVD), prosthetic mechanical valve replacement, etc. Data were obtained from the patient record hospitalization system. Logistic regression, area under the curve (AUC), and bar graphs were used to build predictive models in the development cohort. The models were internally validated, analytically characterized, and calibrated using AUC, calibration curves, and the Hosmer-Lemeshow test.

Results: This single-center retrospective study included 617 patients treated with anticoagulants. Multifactorial analysis showed that male, leukoaraiosis, high risk of falls, APTT ≥ 45.4 s, and FIB ≥ 4.2 g/L were independent risk factors for cerebral hemorrhage, and β-blockers were protective factors. The model was constructed using these six factors with an AUC value of 0.883. In the validation cohort, the model had good discriminatory power (AUC = 0.801) and calibration power. Five-fold cross-validation showed Kappa of 0.483.

Conclusion: Predictive models based on a patient's medical record hospitalization system can be used to identify patients at risk for cerebral hemorrhage. Identifying people at risk can provide proactive interventions for patients.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neurology
Frontiers in Neurology CLINICAL NEUROLOGYNEUROSCIENCES -NEUROSCIENCES
CiteScore
4.90
自引率
8.80%
发文量
2792
审稿时长
14 weeks
期刊介绍: The section Stroke aims to quickly and accurately publish important experimental, translational and clinical studies, and reviews that contribute to the knowledge of stroke, its causes, manifestations, diagnosis, and management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信