{"title":"NF-κB inhibitor PDTC involved in regulating the transplantation immunity in the pearl oyster Pinctada fucata martensii.","authors":"Shirong Fu, Xinyi Lin, Xiaowen Lu, Youmei Qu, Hongxi Chen, Shilin Zheng, Zhihan Li, Yu Jiao, Qingheng Wang, Chuangye Yang, Yuewen Deng","doi":"10.1016/j.fsi.2025.110175","DOIUrl":null,"url":null,"abstract":"<p><p>Nuclear factor kappa B (NF-κB) is involved in various important biological processes, such as inflammation, apoptosis, and cell proliferation. Here, we analyzed the function of NF-κB in transplantation immunity and pearl formation using its inhibitor, pyrrolidinedithiocarbamic acid (PDTC), in the pearl oyster Pinctada fucata martensii. The levels of pro-inflammatory factors (IL-17 and TNF-α) were lower and activity of antioxidant-related enzymes was higher in the transplanted pearl oysters pre-treated with PDTC than in transplanted pearl oysters pre-treated with phosphate-buffered saline (PBS). Transcriptomic analysis showed that PDTC pre-treatment alleviated the immune stimulation caused by transplantation, preserved normal expression of ribosome-related genes, and inhibited the activation of apoptosis and the NF-κB signaling pathway induced by transplantation. Additionally, RIG-I-like receptor, MAPK, Toll-like receptor and NOD-like receptor signaling pathways were inhibited after PDTC treatment. A 30-day pearl cultivation experiment demonstrated a significantly higher nucleus retention rate in transplanted pearl oysters that were pre-treated with PDTC compared to the control group. These results indicate that PDTC treatment suppressed immune-related pathways, thereby alleviating the immune rejection response caused by transplantation and potentially optimizing pearl production. Our results provide valuable information for optimizing pearl cultivation in P. f. martensii.</p>","PeriodicalId":12127,"journal":{"name":"Fish & shellfish immunology","volume":" ","pages":"110175"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish & shellfish immunology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.fsi.2025.110175","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
Nuclear factor kappa B (NF-κB) is involved in various important biological processes, such as inflammation, apoptosis, and cell proliferation. Here, we analyzed the function of NF-κB in transplantation immunity and pearl formation using its inhibitor, pyrrolidinedithiocarbamic acid (PDTC), in the pearl oyster Pinctada fucata martensii. The levels of pro-inflammatory factors (IL-17 and TNF-α) were lower and activity of antioxidant-related enzymes was higher in the transplanted pearl oysters pre-treated with PDTC than in transplanted pearl oysters pre-treated with phosphate-buffered saline (PBS). Transcriptomic analysis showed that PDTC pre-treatment alleviated the immune stimulation caused by transplantation, preserved normal expression of ribosome-related genes, and inhibited the activation of apoptosis and the NF-κB signaling pathway induced by transplantation. Additionally, RIG-I-like receptor, MAPK, Toll-like receptor and NOD-like receptor signaling pathways were inhibited after PDTC treatment. A 30-day pearl cultivation experiment demonstrated a significantly higher nucleus retention rate in transplanted pearl oysters that were pre-treated with PDTC compared to the control group. These results indicate that PDTC treatment suppressed immune-related pathways, thereby alleviating the immune rejection response caused by transplantation and potentially optimizing pearl production. Our results provide valuable information for optimizing pearl cultivation in P. f. martensii.
期刊介绍:
Fish and Shellfish Immunology rapidly publishes high-quality, peer-refereed contributions in the expanding fields of fish and shellfish immunology. It presents studies on the basic mechanisms of both the specific and non-specific defense systems, the cells, tissues, and humoral factors involved, their dependence on environmental and intrinsic factors, response to pathogens, response to vaccination, and applied studies on the development of specific vaccines for use in the aquaculture industry.