Dual RNA-seq Analyses of Viral Hemorrhagic Septicemia Virus and Olive Flounder (Paralichthys olivaceus) Interactions at Low and High Water Temperatures.

IF 2.7 3区 农林科学 Q1 FISHERIES
Gyoungsik Kang, HyeongJin Roh
{"title":"Dual RNA-seq Analyses of Viral Hemorrhagic Septicemia Virus and Olive Flounder (Paralichthys olivaceus) Interactions at Low and High Water Temperatures.","authors":"Gyoungsik Kang, HyeongJin Roh","doi":"10.1016/j.dci.2025.105335","DOIUrl":null,"url":null,"abstract":"<p><p>A vast body of transcriptomic data have considerably contributed to understanding the host responses under viral hemorrhagic septicemia virus (VHSV) infection. However, changes from the perspective of the pathogen and host-pathogen interactions have been relatively underestimated. Given that VHSV genes can be poly-adenylated during replication, this study investigated the global changes from both VHSV and host perspectives using the host transcriptomic data. To achieve this, we utilized VHSV transcriptomic data obtained at different water temperatures (13°C and 20°C). We collected the sequence reads belonging to VHSV through an bioinformatic pipeline developed especially for this study. The VHSV reads were used to construct the consensus reference genome and to investigate the expression of VHSV genes and the frequency of variants under different water temperatures. In addition, both linear and logarithmic scales of VHSV transcription levels, along with host transcriptomes, were used to understand pathogen-host interaction through weighted correlation network analysis (WGCNA). The results revealed that VHSV transcription can exceed 5% of host transcriptome during the infection. Single nucleotide variants (SNVs) appeared more frequently in 13°C groups than in 20°C groups. While VHSV can replicate at both 13°C and 20°C, host transcriptomic responses were notably different, with stronger immune responses and more frequent VHSV genetic changes observed at a lower temperature. This suggests that VHSV infection at low water temperatures significantly influences both the host transcriptional changes and pathogen. Through WGCNA, numerous genes in the module that correlated with VHSV reads on a linear scale were found to be related to cytoskeleton modulation and viral activity. By contrast, the gene module (black) correlated with VHSV reads on a logarithmic scale was strongly associated with host immune responses, such as TNF signaling, necroptosis, and the NF-kappa B signaling pathway. The dual RNA-seq approaches developed in this study will immensely enhance our understanding of host-pathogen interactions across different temperatures.</p>","PeriodicalId":11228,"journal":{"name":"Developmental and comparative immunology","volume":" ","pages":"105335"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental and comparative immunology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.dci.2025.105335","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

Abstract

A vast body of transcriptomic data have considerably contributed to understanding the host responses under viral hemorrhagic septicemia virus (VHSV) infection. However, changes from the perspective of the pathogen and host-pathogen interactions have been relatively underestimated. Given that VHSV genes can be poly-adenylated during replication, this study investigated the global changes from both VHSV and host perspectives using the host transcriptomic data. To achieve this, we utilized VHSV transcriptomic data obtained at different water temperatures (13°C and 20°C). We collected the sequence reads belonging to VHSV through an bioinformatic pipeline developed especially for this study. The VHSV reads were used to construct the consensus reference genome and to investigate the expression of VHSV genes and the frequency of variants under different water temperatures. In addition, both linear and logarithmic scales of VHSV transcription levels, along with host transcriptomes, were used to understand pathogen-host interaction through weighted correlation network analysis (WGCNA). The results revealed that VHSV transcription can exceed 5% of host transcriptome during the infection. Single nucleotide variants (SNVs) appeared more frequently in 13°C groups than in 20°C groups. While VHSV can replicate at both 13°C and 20°C, host transcriptomic responses were notably different, with stronger immune responses and more frequent VHSV genetic changes observed at a lower temperature. This suggests that VHSV infection at low water temperatures significantly influences both the host transcriptional changes and pathogen. Through WGCNA, numerous genes in the module that correlated with VHSV reads on a linear scale were found to be related to cytoskeleton modulation and viral activity. By contrast, the gene module (black) correlated with VHSV reads on a logarithmic scale was strongly associated with host immune responses, such as TNF signaling, necroptosis, and the NF-kappa B signaling pathway. The dual RNA-seq approaches developed in this study will immensely enhance our understanding of host-pathogen interactions across different temperatures.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
6.90%
发文量
206
审稿时长
49 days
期刊介绍: Developmental and Comparative Immunology (DCI) is an international journal that publishes articles describing original research in all areas of immunology, including comparative aspects of immunity and the evolution and development of the immune system. Manuscripts describing studies of immune systems in both vertebrates and invertebrates are welcome. All levels of immunological investigations are appropriate: organismal, cellular, biochemical and molecular genetics, extending to such fields as aging of the immune system, interaction between the immune and neuroendocrine system and intestinal immunity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信