Adapting the Flexible Farrington Algorithm for daily situational awareness and alert system to support public health decision-making during the SARS-CoV-2 epidemic in England.
Ian Simms, André Charlett, Felipe J Colón-González, Paula B Blomquist, Iain R Lake, Asad Zaidi, Stephanie Shadwell, James Sedgwick, Karthik Paranthaman, Roberto Vivancos
{"title":"Adapting the Flexible Farrington Algorithm for daily situational awareness and alert system to support public health decision-making during the SARS-CoV-2 epidemic in England.","authors":"Ian Simms, André Charlett, Felipe J Colón-González, Paula B Blomquist, Iain R Lake, Asad Zaidi, Stephanie Shadwell, James Sedgwick, Karthik Paranthaman, Roberto Vivancos","doi":"10.1017/S0950268825000160","DOIUrl":null,"url":null,"abstract":"<p><p>The Flexible Farrington Algorithm (FFA) is widely used to detect infectious disease outbreaks at national/regional levels on a weekly basis. The rapid spread of SARS-CoV-2 alongside the speed at which diagnostic and public health interventions were introduced made the FFA of limited use. We describe how the methodology was adapted to provide a daily alert system to support local health protection teams (HPTs) working in the 316 English lower-tier local authorities. To minimize the impact of a rapidly changing epidemiological situation, the FFA was altered to use 8 weeks of data. The adapted algorithm was based on reported positive counts using total tests as an offset. Performance was assessed using the root mean square error (RMSE) over a period. Graphical reports were sent to local teams enabling targeted public health action. From 1 July 2020, results were routinely reported. Adaptions accommodated the impact on reporting because of changes in diagnostic strategy (introduction of lateral flow devices). RMSE values were relatively small compared to observed counts, increased during periods of increased reporting, and were relatively higher in the northern and western areas of the country. The exceedance reports were well received. This presentation should be considered as a successful proof-of-concept.</p>","PeriodicalId":11721,"journal":{"name":"Epidemiology and Infection","volume":" ","pages":"e28"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11869082/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiology and Infection","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S0950268825000160","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
The Flexible Farrington Algorithm (FFA) is widely used to detect infectious disease outbreaks at national/regional levels on a weekly basis. The rapid spread of SARS-CoV-2 alongside the speed at which diagnostic and public health interventions were introduced made the FFA of limited use. We describe how the methodology was adapted to provide a daily alert system to support local health protection teams (HPTs) working in the 316 English lower-tier local authorities. To minimize the impact of a rapidly changing epidemiological situation, the FFA was altered to use 8 weeks of data. The adapted algorithm was based on reported positive counts using total tests as an offset. Performance was assessed using the root mean square error (RMSE) over a period. Graphical reports were sent to local teams enabling targeted public health action. From 1 July 2020, results were routinely reported. Adaptions accommodated the impact on reporting because of changes in diagnostic strategy (introduction of lateral flow devices). RMSE values were relatively small compared to observed counts, increased during periods of increased reporting, and were relatively higher in the northern and western areas of the country. The exceedance reports were well received. This presentation should be considered as a successful proof-of-concept.
期刊介绍:
Epidemiology & Infection publishes original reports and reviews on all aspects of infection in humans and animals. Particular emphasis is given to the epidemiology, prevention and control of infectious diseases. The scope covers the zoonoses, outbreaks, food hygiene, vaccine studies, statistics and the clinical, social and public-health aspects of infectious disease, as well as some tropical infections. It has become the key international periodical in which to find the latest reports on recently discovered infections and new technology. For those concerned with policy and planning for the control of infections, the papers on mathematical modelling of epidemics caused by historical, current and emergent infections are of particular value.