Piotr Przymus, Krzysztof Rykaczewski, Adrián Martín-Segura, Jaak Truu, Enrique Carrillo De Santa Pau, Mikhail Kolev, Irina Naskinova, Aleksandra Gruca, Alexia Sampri, Marcus Frohme, Alina Nechyporenko
{"title":"Deep learning in microbiome analysis: a comprehensive review of neural network models.","authors":"Piotr Przymus, Krzysztof Rykaczewski, Adrián Martín-Segura, Jaak Truu, Enrique Carrillo De Santa Pau, Mikhail Kolev, Irina Naskinova, Aleksandra Gruca, Alexia Sampri, Marcus Frohme, Alina Nechyporenko","doi":"10.3389/fmicb.2024.1516667","DOIUrl":null,"url":null,"abstract":"<p><p>Microbiome research, the study of microbial communities in diverse environments, has seen significant advances due to the integration of deep learning (DL) methods. These computational techniques have become essential for addressing the inherent complexity and high-dimensionality of microbiome data, which consist of different types of omics datasets. Deep learning algorithms have shown remarkable capabilities in pattern recognition, feature extraction, and predictive modeling, enabling researchers to uncover hidden relationships within microbial ecosystems. By automating the detection of functional genes, microbial interactions, and host-microbiome dynamics, DL methods offer unprecedented precision in understanding microbiome composition and its impact on health, disease, and the environment. However, despite their potential, deep learning approaches face significant challenges in microbiome research. Additionally, the biological variability in microbiome datasets requires tailored approaches to ensure robust and generalizable outcomes. As microbiome research continues to generate vast and complex datasets, addressing these challenges will be crucial for advancing microbiological insights and translating them into practical applications with DL. This review provides an overview of different deep learning models in microbiome research, discussing their strengths, practical uses, and implications for future studies. We examine how these models are being applied to solve key problems and highlight potential pathways to overcome current limitations, emphasizing the transformative impact DL could have on the field moving forward.</p>","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":"15 ","pages":"1516667"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794229/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2024.1516667","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microbiome research, the study of microbial communities in diverse environments, has seen significant advances due to the integration of deep learning (DL) methods. These computational techniques have become essential for addressing the inherent complexity and high-dimensionality of microbiome data, which consist of different types of omics datasets. Deep learning algorithms have shown remarkable capabilities in pattern recognition, feature extraction, and predictive modeling, enabling researchers to uncover hidden relationships within microbial ecosystems. By automating the detection of functional genes, microbial interactions, and host-microbiome dynamics, DL methods offer unprecedented precision in understanding microbiome composition and its impact on health, disease, and the environment. However, despite their potential, deep learning approaches face significant challenges in microbiome research. Additionally, the biological variability in microbiome datasets requires tailored approaches to ensure robust and generalizable outcomes. As microbiome research continues to generate vast and complex datasets, addressing these challenges will be crucial for advancing microbiological insights and translating them into practical applications with DL. This review provides an overview of different deep learning models in microbiome research, discussing their strengths, practical uses, and implications for future studies. We examine how these models are being applied to solve key problems and highlight potential pathways to overcome current limitations, emphasizing the transformative impact DL could have on the field moving forward.
期刊介绍:
Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.