Deep learning in microbiome analysis: a comprehensive review of neural network models.

IF 4 2区 生物学 Q2 MICROBIOLOGY
Frontiers in Microbiology Pub Date : 2025-01-22 eCollection Date: 2024-01-01 DOI:10.3389/fmicb.2024.1516667
Piotr Przymus, Krzysztof Rykaczewski, Adrián Martín-Segura, Jaak Truu, Enrique Carrillo De Santa Pau, Mikhail Kolev, Irina Naskinova, Aleksandra Gruca, Alexia Sampri, Marcus Frohme, Alina Nechyporenko
{"title":"Deep learning in microbiome analysis: a comprehensive review of neural network models.","authors":"Piotr Przymus, Krzysztof Rykaczewski, Adrián Martín-Segura, Jaak Truu, Enrique Carrillo De Santa Pau, Mikhail Kolev, Irina Naskinova, Aleksandra Gruca, Alexia Sampri, Marcus Frohme, Alina Nechyporenko","doi":"10.3389/fmicb.2024.1516667","DOIUrl":null,"url":null,"abstract":"<p><p>Microbiome research, the study of microbial communities in diverse environments, has seen significant advances due to the integration of deep learning (DL) methods. These computational techniques have become essential for addressing the inherent complexity and high-dimensionality of microbiome data, which consist of different types of omics datasets. Deep learning algorithms have shown remarkable capabilities in pattern recognition, feature extraction, and predictive modeling, enabling researchers to uncover hidden relationships within microbial ecosystems. By automating the detection of functional genes, microbial interactions, and host-microbiome dynamics, DL methods offer unprecedented precision in understanding microbiome composition and its impact on health, disease, and the environment. However, despite their potential, deep learning approaches face significant challenges in microbiome research. Additionally, the biological variability in microbiome datasets requires tailored approaches to ensure robust and generalizable outcomes. As microbiome research continues to generate vast and complex datasets, addressing these challenges will be crucial for advancing microbiological insights and translating them into practical applications with DL. This review provides an overview of different deep learning models in microbiome research, discussing their strengths, practical uses, and implications for future studies. We examine how these models are being applied to solve key problems and highlight potential pathways to overcome current limitations, emphasizing the transformative impact DL could have on the field moving forward.</p>","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":"15 ","pages":"1516667"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794229/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2024.1516667","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microbiome research, the study of microbial communities in diverse environments, has seen significant advances due to the integration of deep learning (DL) methods. These computational techniques have become essential for addressing the inherent complexity and high-dimensionality of microbiome data, which consist of different types of omics datasets. Deep learning algorithms have shown remarkable capabilities in pattern recognition, feature extraction, and predictive modeling, enabling researchers to uncover hidden relationships within microbial ecosystems. By automating the detection of functional genes, microbial interactions, and host-microbiome dynamics, DL methods offer unprecedented precision in understanding microbiome composition and its impact on health, disease, and the environment. However, despite their potential, deep learning approaches face significant challenges in microbiome research. Additionally, the biological variability in microbiome datasets requires tailored approaches to ensure robust and generalizable outcomes. As microbiome research continues to generate vast and complex datasets, addressing these challenges will be crucial for advancing microbiological insights and translating them into practical applications with DL. This review provides an overview of different deep learning models in microbiome research, discussing their strengths, practical uses, and implications for future studies. We examine how these models are being applied to solve key problems and highlight potential pathways to overcome current limitations, emphasizing the transformative impact DL could have on the field moving forward.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
9.60%
发文量
4837
审稿时长
14 weeks
期刊介绍: Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信