Eye saccades align optic flow with retinal specializations during object pursuit in freely moving ferrets.

IF 8.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Current Biology Pub Date : 2025-02-24 Epub Date: 2025-02-04 DOI:10.1016/j.cub.2024.12.032
Damian J Wallace, Kay-Michael Voit, Daniela Martin Machado, Mohammadreza Bahadorian, Juergen Sawinski, David S Greenberg, Paul Stahr, Carl D Holmgren, Giacomo Bassetto, Federica B Rosselli, Aneta Koseska, David Fitzpatrick, Jason N D Kerr
{"title":"Eye saccades align optic flow with retinal specializations during object pursuit in freely moving ferrets.","authors":"Damian J Wallace, Kay-Michael Voit, Daniela Martin Machado, Mohammadreza Bahadorian, Juergen Sawinski, David S Greenberg, Paul Stahr, Carl D Holmgren, Giacomo Bassetto, Federica B Rosselli, Aneta Koseska, David Fitzpatrick, Jason N D Kerr","doi":"10.1016/j.cub.2024.12.032","DOIUrl":null,"url":null,"abstract":"<p><p>During prey pursuit, how eye rotations, such as saccades, enable continuous tracking of erratically moving targets while enabling an animal to navigate through the environment is unknown. To better understand this, we measured head and eye rotations in freely running ferrets during pursuit behavior. By also tracking the target and all environmental features, we reconstructed the animal's visual fields and their relationship to retinal structures. In the reconstructed visual fields, the target position clustered on and around the high-acuity retinal area location, the area centralis, and surprisingly, this cluster was not significantly shifted by digital removal of either eye saccades, exclusively elicited when the ferrets made turns, or head rotations that were tightly synchronized with the saccades. Here, we show that, while the saccades did not fixate the moving target with the area centralis, they instead aligned the area centralis with the intended direction of travel. This also aligned the area centralis with features of the optic flow pattern, such as flow direction and focus of expansion, used for navigation by many species. While saccades initially rotated the eyes in the same direction as the head turn, saccades were followed by eye rotations countering the ongoing head rotation, which reduced image blur and limited information loss across the visual field during head turns. As we measured the same head and eye rotational relationship in freely moving tree shrews, rats, and mice, we suggest that these saccades and counter-rotations are a generalized mechanism enabling mammals to navigate complex environments during pursuit.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"761-775.e10"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2024.12.032","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

During prey pursuit, how eye rotations, such as saccades, enable continuous tracking of erratically moving targets while enabling an animal to navigate through the environment is unknown. To better understand this, we measured head and eye rotations in freely running ferrets during pursuit behavior. By also tracking the target and all environmental features, we reconstructed the animal's visual fields and their relationship to retinal structures. In the reconstructed visual fields, the target position clustered on and around the high-acuity retinal area location, the area centralis, and surprisingly, this cluster was not significantly shifted by digital removal of either eye saccades, exclusively elicited when the ferrets made turns, or head rotations that were tightly synchronized with the saccades. Here, we show that, while the saccades did not fixate the moving target with the area centralis, they instead aligned the area centralis with the intended direction of travel. This also aligned the area centralis with features of the optic flow pattern, such as flow direction and focus of expansion, used for navigation by many species. While saccades initially rotated the eyes in the same direction as the head turn, saccades were followed by eye rotations countering the ongoing head rotation, which reduced image blur and limited information loss across the visual field during head turns. As we measured the same head and eye rotational relationship in freely moving tree shrews, rats, and mice, we suggest that these saccades and counter-rotations are a generalized mechanism enabling mammals to navigate complex environments during pursuit.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信