Harnessing AI for enhanced evidence-based laboratory medicine (EBLM)

IF 3.2 3区 医学 Q2 MEDICAL LABORATORY TECHNOLOGY
Tahir S. Pillay , Deniz İlhan Topcu , Sedef Yenice
{"title":"Harnessing AI for enhanced evidence-based laboratory medicine (EBLM)","authors":"Tahir S. Pillay ,&nbsp;Deniz İlhan Topcu ,&nbsp;Sedef Yenice","doi":"10.1016/j.cca.2025.120181","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of artificial intelligence (AI) into laboratory medicine, is revolutionizing diagnostic accuracy, operational efficiency, and personalized patient care. AI technologies(machine learning, natural language processing and computer vision) advance evidence-based laboratory medicine (EBLM) by automating and optimizing critical processes(formulating clinical questions, conducting literature searches, appraising evidence, and developing clinical guidelines). These reduce the time for systematic reviews, ensuring consistency in appraisal, and enabling real-time updates to guidelines. AI supports personalized medicine by analyzing large datasets, genetic information and electronic health records (EHRs), to tailor diagnostic and treatment plans to patient profiles. Predictive analytics enhance outcomes by leveraging historical data and ongoing monitoring to predict responses and optimize care pathways. Despite the transformative potential, there are challenges. The accuracy, transparency, and explainability of AI algorithms is critical for gaining trust and ensuring ethical deployment. Integration into existing clinical workflows requires collaboration between AI developers and users to ensure seamless user-friendly adoption. Ethical considerations, such as privacy,data security, and algorithmic bias, must also be addressed to mitigate risks and ensure equitable healthcare delivery. Regulatory frameworks, eg. The EU AI Regulation, emphasize transparency, data governance, and human oversight, particularly for high-risk AI systems. The economic and operational benefits are cost savings, improved diagnostic precision, and enhanced patient outcomes. Future trends (federated learning and self-supervised learning), will enhance the scalability and applicability of AI in EBLM, paving the way for a new era of precision medicine. AI in EBLM has the potential to transform healthcare delivery, improve patient outcomes, and advance personalized/precision medicine.</div></div>","PeriodicalId":10205,"journal":{"name":"Clinica Chimica Acta","volume":"569 ","pages":"Article 120181"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinica Chimica Acta","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009898125000609","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of artificial intelligence (AI) into laboratory medicine, is revolutionizing diagnostic accuracy, operational efficiency, and personalized patient care. AI technologies(machine learning, natural language processing and computer vision) advance evidence-based laboratory medicine (EBLM) by automating and optimizing critical processes(formulating clinical questions, conducting literature searches, appraising evidence, and developing clinical guidelines). These reduce the time for systematic reviews, ensuring consistency in appraisal, and enabling real-time updates to guidelines. AI supports personalized medicine by analyzing large datasets, genetic information and electronic health records (EHRs), to tailor diagnostic and treatment plans to patient profiles. Predictive analytics enhance outcomes by leveraging historical data and ongoing monitoring to predict responses and optimize care pathways. Despite the transformative potential, there are challenges. The accuracy, transparency, and explainability of AI algorithms is critical for gaining trust and ensuring ethical deployment. Integration into existing clinical workflows requires collaboration between AI developers and users to ensure seamless user-friendly adoption. Ethical considerations, such as privacy,data security, and algorithmic bias, must also be addressed to mitigate risks and ensure equitable healthcare delivery. Regulatory frameworks, eg. The EU AI Regulation, emphasize transparency, data governance, and human oversight, particularly for high-risk AI systems. The economic and operational benefits are cost savings, improved diagnostic precision, and enhanced patient outcomes. Future trends (federated learning and self-supervised learning), will enhance the scalability and applicability of AI in EBLM, paving the way for a new era of precision medicine. AI in EBLM has the potential to transform healthcare delivery, improve patient outcomes, and advance personalized/precision medicine.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Clinica Chimica Acta
Clinica Chimica Acta 医学-医学实验技术
CiteScore
10.10
自引率
2.00%
发文量
1268
审稿时长
23 days
期刊介绍: The Official Journal of the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) Clinica Chimica Acta is a high-quality journal which publishes original Research Communications in the field of clinical chemistry and laboratory medicine, defined as the diagnostic application of chemistry, biochemistry, immunochemistry, biochemical aspects of hematology, toxicology, and molecular biology to the study of human disease in body fluids and cells. The objective of the journal is to publish novel information leading to a better understanding of biological mechanisms of human diseases, their prevention, diagnosis, and patient management. Reports of an applied clinical character are also welcome. Papers concerned with normal metabolic processes or with constituents of normal cells or body fluids, such as reports of experimental or clinical studies in animals, are only considered when they are clearly and directly relevant to human disease. Evaluation of commercial products have a low priority for publication, unless they are novel or represent a technological breakthrough. Studies dealing with effects of drugs and natural products and studies dealing with the redox status in various diseases are not within the journal''s scope. Development and evaluation of novel analytical methodologies where applicable to diagnostic clinical chemistry and laboratory medicine, including point-of-care testing, and topics on laboratory management and informatics will also be considered. Studies focused on emerging diagnostic technologies and (big) data analysis procedures including digitalization, mobile Health, and artificial Intelligence applied to Laboratory Medicine are also of interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信