Advances and Challenges in Molecularly Imprinted Electrochemical Sensors for Application in Environmental, Biomedicine, and Food Safety.

IF 4.2 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Rui Liu, Meiting Zhao, Xin Zhang, Chaojun Zhang, Binqiao Ren, Jing Ma
{"title":"Advances and Challenges in Molecularly Imprinted Electrochemical Sensors for Application in Environmental, Biomedicine, and Food Safety.","authors":"Rui Liu, Meiting Zhao, Xin Zhang, Chaojun Zhang, Binqiao Ren, Jing Ma","doi":"10.1080/10408347.2025.2460751","DOIUrl":null,"url":null,"abstract":"<p><p>Molecularly imprinted electrochemical sensors (MIECSs) are a specialized class of sensors based on molecularly imprinted derivative materials (MIDPs), which have been extensively applied in environmental monitoring, biomedicine, and food safety, allowing for high selectivity and sensitivity in detecting target molecules. This review provides an in-depth exploration of the most innovative and successful nanomaterials employed for modifying imprinted polymers, highlighting their crucial role in enhancing sensor performance, including carbon-based nanomaterials, meal derivatives, magnetic nanomaterials, polymeric and composite nanomaterials. In addition to reviewing advances in derivative materials design, this article delves into the current challenges facing molecularly imprinted sensors, such as issues related to template removal, nonspecific binding, and fabrication reproducibility. These challenges limit the practical application of MIECSs, particularly in complex real-world environments. The review also discusses representative applications of these sensors, including environmental monitoring, biomedicine and food safety, which demonstrate their versatility and potential. Finally, the review outlines future research directions aimed at overcoming these challenges. This includes strategies for improving the stability and reusability of MIECSs, enhancing their selectivity and sensitivity, and developing novel imprinting techniques. By addressing these issues, researchers can pave the way for the next generation of electrochemical sensors, which will be more robust, reliable, and suitable for a wide range of industrial and clinical applications.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"1-19"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in analytical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/10408347.2025.2460751","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Molecularly imprinted electrochemical sensors (MIECSs) are a specialized class of sensors based on molecularly imprinted derivative materials (MIDPs), which have been extensively applied in environmental monitoring, biomedicine, and food safety, allowing for high selectivity and sensitivity in detecting target molecules. This review provides an in-depth exploration of the most innovative and successful nanomaterials employed for modifying imprinted polymers, highlighting their crucial role in enhancing sensor performance, including carbon-based nanomaterials, meal derivatives, magnetic nanomaterials, polymeric and composite nanomaterials. In addition to reviewing advances in derivative materials design, this article delves into the current challenges facing molecularly imprinted sensors, such as issues related to template removal, nonspecific binding, and fabrication reproducibility. These challenges limit the practical application of MIECSs, particularly in complex real-world environments. The review also discusses representative applications of these sensors, including environmental monitoring, biomedicine and food safety, which demonstrate their versatility and potential. Finally, the review outlines future research directions aimed at overcoming these challenges. This includes strategies for improving the stability and reusability of MIECSs, enhancing their selectivity and sensitivity, and developing novel imprinting techniques. By addressing these issues, researchers can pave the way for the next generation of electrochemical sensors, which will be more robust, reliable, and suitable for a wide range of industrial and clinical applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.00
自引率
4.00%
发文量
137
审稿时长
6 months
期刊介绍: Critical Reviews in Analytical Chemistry continues to be a dependable resource for both the expert and the student by providing in-depth, scholarly, insightful reviews of important topics within the discipline of analytical chemistry and related measurement sciences. The journal exclusively publishes review articles that illuminate the underlying science, that evaluate the field''s status by putting recent developments into proper perspective and context, and that speculate on possible future developments. A limited number of articles are of a "tutorial" format written by experts for scientists seeking introduction or clarification in a new area. This journal serves as a forum for linking various underlying components in broad and interdisciplinary means, while maintaining balance between applied and fundamental research. Topics we are interested in receiving reviews on are the following: · chemical analysis; · instrumentation; · chemometrics; · analytical biochemistry; · medicinal analysis; · forensics; · environmental sciences; · applied physics; · and material science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信