{"title":"Real-time multimodal imaging of daptomycin action on the cell wall of adherent Staphylococcus aureus.","authors":"Alexis Canette, Rym Boudjemaa, Julien Deschamps, Karine Steenkeste, Christian Marlière, Romain Briandet, Marie-Pierre Fontaine-Aupart","doi":"10.1186/s13104-025-07130-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study investigated the efficacy of daptomycin against adherent Staphylococcus aureus (S. aureus), a common colonizer of medical devices that leads to severe infections. For the first time, we evaluated the bactericidal effects of daptomycin on S. aureus immediately after adhesion, mimicking early-stage contamination of biomaterials. Time-kill curve assay and confocal laser scanning microscopy (CLSM) were used to analyze the process dynamics. In addition, atomic force microscopy (AFM) and scanning electron microscopy (SEM) were employed to elucidate daptomycin-induced structural changes in the bacterial cell wall.</p><p><strong>Results description: </strong>Daptomycin, at clinically relevant concentrations, rapidly eradicated adherent bacteria in the exponential growth phase, demonstrating an efficiency comparable to its action against planktonic cells. Prolonged exposure to the antibiotic caused marked alterations in the bacterial cell wall, including surface roughening and perforation, as revealed by multimodal imaging. However, daptomycin effectiveness diminished as biofilm formation progressed, underscoring the need for further exploration of optimized clinical strategies.</p>","PeriodicalId":9234,"journal":{"name":"BMC Research Notes","volume":"18 1","pages":"54"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11796211/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Research Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13104-025-07130-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: This study investigated the efficacy of daptomycin against adherent Staphylococcus aureus (S. aureus), a common colonizer of medical devices that leads to severe infections. For the first time, we evaluated the bactericidal effects of daptomycin on S. aureus immediately after adhesion, mimicking early-stage contamination of biomaterials. Time-kill curve assay and confocal laser scanning microscopy (CLSM) were used to analyze the process dynamics. In addition, atomic force microscopy (AFM) and scanning electron microscopy (SEM) were employed to elucidate daptomycin-induced structural changes in the bacterial cell wall.
Results description: Daptomycin, at clinically relevant concentrations, rapidly eradicated adherent bacteria in the exponential growth phase, demonstrating an efficiency comparable to its action against planktonic cells. Prolonged exposure to the antibiotic caused marked alterations in the bacterial cell wall, including surface roughening and perforation, as revealed by multimodal imaging. However, daptomycin effectiveness diminished as biofilm formation progressed, underscoring the need for further exploration of optimized clinical strategies.
BMC Research NotesBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.60
自引率
0.00%
发文量
363
审稿时长
15 weeks
期刊介绍:
BMC Research Notes publishes scientifically valid research outputs that cannot be considered as full research or methodology articles. We support the research community across all scientific and clinical disciplines by providing an open access forum for sharing data and useful information; this includes, but is not limited to, updates to previous work, additions to established methods, short publications, null results, research proposals and data management plans.