Reactivity of 2-((3-Cyano-4-(4-Fluorophenyl)-6-(Naphthalen-2-yl)Pyridin-2-yl)Oxy)Acetohydrazide Toward Some Reagents for Preparing a Promising Anticancer Agents and Molecular Docking Study.
Hemat S Khalaf, May A El-Manawaty, Eman R Kotb, Mohamad T Abdelrahman, Ahmed H Shamroukh
{"title":"Reactivity of 2-((3-Cyano-4-(4-Fluorophenyl)-6-(Naphthalen-2-yl)Pyridin-2-yl)Oxy)Acetohydrazide Toward Some Reagents for Preparing a Promising Anticancer Agents and Molecular Docking Study.","authors":"Hemat S Khalaf, May A El-Manawaty, Eman R Kotb, Mohamad T Abdelrahman, Ahmed H Shamroukh","doi":"10.1002/cbdv.202403463","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to synthesize a novel series of nicotinonitriles incorporating pyrazole, oxadiazole, isoindoline, thiadiazole, and thiazolidinone moieties (compounds 4-11). The synthesis utilizes 2-((3-cyano-4-(4-fluorophenyl)-6-(naphthalen-2-yl)pyridin-2-yloxy)acetohydrazide (3) as a key starting material to enhance potential anticancer activity. The molecular structures of compounds 4-11 were elucidated using various spectroscopic techniques and elemental analysis. The synthesized compounds were screened for cytotoxic activity against human cancer cell lines, including MCF-7 (human Caucasian breast adenocarcinoma), MDA-MB-231 (breast ductal carcinoma), and PC-3 (prostate cancer), using an MTT assay with doxorubicin as a reference drug. Among the tested compounds, 4, 6b, and 7 exhibited the most promising cytotoxic activity, with IC<sub>50</sub> values ranging from 22.5 to 91.3 µM. The safety profile of these compounds was further evaluated using noncancerous human skin fibroblast cells (BJ-1). Notably, 6b and 7 demonstrated high selectivity indices (SI > 3) against cancer cells, indicating preferential cytotoxicity, whereas compound 4 lacked selectivity. Docking studies, consistent with experimental data, further supported the potential anticancer properties of compounds 4, 6b, and 7. Given their significant inhibitory effects on cancer cell lines with minimal to no impact on normal cells, compounds 6b and 7 are strong candidates for further drug development as potential anticancer agents.</p>","PeriodicalId":9878,"journal":{"name":"Chemistry & Biodiversity","volume":" ","pages":"e202403463"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry & Biodiversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cbdv.202403463","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to synthesize a novel series of nicotinonitriles incorporating pyrazole, oxadiazole, isoindoline, thiadiazole, and thiazolidinone moieties (compounds 4-11). The synthesis utilizes 2-((3-cyano-4-(4-fluorophenyl)-6-(naphthalen-2-yl)pyridin-2-yloxy)acetohydrazide (3) as a key starting material to enhance potential anticancer activity. The molecular structures of compounds 4-11 were elucidated using various spectroscopic techniques and elemental analysis. The synthesized compounds were screened for cytotoxic activity against human cancer cell lines, including MCF-7 (human Caucasian breast adenocarcinoma), MDA-MB-231 (breast ductal carcinoma), and PC-3 (prostate cancer), using an MTT assay with doxorubicin as a reference drug. Among the tested compounds, 4, 6b, and 7 exhibited the most promising cytotoxic activity, with IC50 values ranging from 22.5 to 91.3 µM. The safety profile of these compounds was further evaluated using noncancerous human skin fibroblast cells (BJ-1). Notably, 6b and 7 demonstrated high selectivity indices (SI > 3) against cancer cells, indicating preferential cytotoxicity, whereas compound 4 lacked selectivity. Docking studies, consistent with experimental data, further supported the potential anticancer properties of compounds 4, 6b, and 7. Given their significant inhibitory effects on cancer cell lines with minimal to no impact on normal cells, compounds 6b and 7 are strong candidates for further drug development as potential anticancer agents.
期刊介绍:
Chemistry & Biodiversity serves as a high-quality publishing forum covering a wide range of biorelevant topics for a truly international audience. This journal publishes both field-specific and interdisciplinary contributions on all aspects of biologically relevant chemistry research in the form of full-length original papers, short communications, invited reviews, and commentaries. It covers all research fields straddling the border between the chemical and biological sciences, with the ultimate goal of broadening our understanding of how nature works at a molecular level.
Since 2017, Chemistry & Biodiversity is published in an online-only format.