Hydroxyurea mitigates diabetic kidney disease through mTOR-S6K signaling pathway in STZ-induced diabetic mice.

IF 4.6 2区 生物学 Q2 CELL BIOLOGY
Frontiers in Cell and Developmental Biology Pub Date : 2025-01-22 eCollection Date: 2025-01-01 DOI:10.3389/fcell.2025.1529901
Wanying Cheng, Cenzhu Wang, Meican Ma, Yu Zhou
{"title":"Hydroxyurea mitigates diabetic kidney disease through mTOR-S6K signaling pathway in STZ-induced diabetic mice.","authors":"Wanying Cheng, Cenzhu Wang, Meican Ma, Yu Zhou","doi":"10.3389/fcell.2025.1529901","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diabetic kidney disease (DKD) is the leading risk factor for end-stage renal disease (ESRD). Hydroxyurea (HU), a sickle cell disease (SCD) drug approved by FDA, shows protective effect in nephropathy. This study aims to understand whether the application of HU could be effective to treat DKD.</p><p><strong>Methods: </strong>The streptozotocin (STZ)-induced diabetic mice, and high glucose (HG)-treated human renal mesangial cells (HRMCs) were used to investigate the effect of HU on DKD. Serum creatinine and blood urea nitrogen levels reflecting renal function were evaluated. Histology was used to evaluate pathological changes. Indicators of inflammation and apoptosis were detected. Lastly, the mTOR-S6K pathway was explored by detecting the protein expression of S6K and phosphorylated S6K.</p><p><strong>Results: </strong>In STZ-induced diabetic mice, administration of HU (20 mg/kg) in drinking water for 16 weeks resulted in significant reductions in creatinine and urea nitrogen levels, alongside mitigating histopathological damage. Additionally, HU effectively suppressed the inflammatory response and apoptosis within the kidneys. HRMC cells were cultivated in HG conditions, and HU effectively attenuated the HG-induced inflammation and apoptosis. Moreover, HU treatment significantly inhibited the mTOR signaling pathway in both in both <i>in vivo</i> and <i>in vitro</i> experiments.</p><p><strong>Conclusion: </strong>This study unveils a new role of HU in alleviating diabetic kidney disease by modulating inflammation and apoptosis through the mTOR-S6K pathway. However, since HU did not significantly affect blood glucose levels, its therapeutic potential may be best realized when used in combination with standard antidiabetic therapies. Such a combination approach could simultaneously address hyperglycemia and renal dysfunction, offering a more comprehensive management strategy for DKD.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"13 ","pages":"1529901"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11794838/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cell and Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fcell.2025.1529901","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Diabetic kidney disease (DKD) is the leading risk factor for end-stage renal disease (ESRD). Hydroxyurea (HU), a sickle cell disease (SCD) drug approved by FDA, shows protective effect in nephropathy. This study aims to understand whether the application of HU could be effective to treat DKD.

Methods: The streptozotocin (STZ)-induced diabetic mice, and high glucose (HG)-treated human renal mesangial cells (HRMCs) were used to investigate the effect of HU on DKD. Serum creatinine and blood urea nitrogen levels reflecting renal function were evaluated. Histology was used to evaluate pathological changes. Indicators of inflammation and apoptosis were detected. Lastly, the mTOR-S6K pathway was explored by detecting the protein expression of S6K and phosphorylated S6K.

Results: In STZ-induced diabetic mice, administration of HU (20 mg/kg) in drinking water for 16 weeks resulted in significant reductions in creatinine and urea nitrogen levels, alongside mitigating histopathological damage. Additionally, HU effectively suppressed the inflammatory response and apoptosis within the kidneys. HRMC cells were cultivated in HG conditions, and HU effectively attenuated the HG-induced inflammation and apoptosis. Moreover, HU treatment significantly inhibited the mTOR signaling pathway in both in both in vivo and in vitro experiments.

Conclusion: This study unveils a new role of HU in alleviating diabetic kidney disease by modulating inflammation and apoptosis through the mTOR-S6K pathway. However, since HU did not significantly affect blood glucose levels, its therapeutic potential may be best realized when used in combination with standard antidiabetic therapies. Such a combination approach could simultaneously address hyperglycemia and renal dysfunction, offering a more comprehensive management strategy for DKD.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Cell and Developmental Biology
Frontiers in Cell and Developmental Biology Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
9.70
自引率
3.60%
发文量
2531
审稿时长
12 weeks
期刊介绍: Frontiers in Cell and Developmental Biology is a broad-scope, interdisciplinary open-access journal, focusing on the fundamental processes of life, led by Prof Amanda Fisher and supported by a geographically diverse, high-quality editorial board. The journal welcomes submissions on a wide spectrum of cell and developmental biology, covering intracellular and extracellular dynamics, with sections focusing on signaling, adhesion, migration, cell death and survival and membrane trafficking. Additionally, the journal offers sections dedicated to the cutting edge of fundamental and translational research in molecular medicine and stem cell biology. With a collaborative, rigorous and transparent peer-review, the journal produces the highest scientific quality in both fundamental and applied research, and advanced article level metrics measure the real-time impact and influence of each publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信