{"title":"Bifidobacterium adolescentis-derived nicotinic acid improves host skeletal muscle mitochondrial function to ameliorate sarcopenia.","authors":"Zeng Zhang, Quan Guo, Zhihan Yang, Yukai Sun, Shuaiming Jiang, Yangli He, Jiahe Li, Jiachao Zhang","doi":"10.1016/j.celrep.2025.115265","DOIUrl":null,"url":null,"abstract":"<p><p>Sarcopenia significantly diminishes quality of life and increases mortality risk in older adults. While the connection between the gut microbiome and muscle health is recognized, the underlying mechanisms are poorly understood. In this study, shotgun metagenomics revealed that Bifidobacterium adolescentis is notably depleted in individuals with sarcopenia, correlating with reduced muscle mass and function. This finding was validated in aged mice. Metabolomics analysis identified nicotinic acid as a key metabolite produced by B. adolescentis, linked to improvements in muscle mass and functionality in individuals with sarcopenia. Mechanistically, nicotinic acid restores nicotinamide adenine dinucleotide (NAD+) levels in muscle, inhibits the FoxO3/Atrogin-1/Murf-1 axis, and promotes satellite cell proliferation, reducing muscle atrophy. Additionally, NAD+ activation enhances the silent-information-regulator 1 (SIRT1)/peroxisome-proliferator-activated-receptor-γ-coactivator 1-alpha (PGC-1α) axis, stimulating mitochondrial biogenesis and promoting oxidative metabolism in slow-twitch fibers, ultimately improving muscle function. Our findings suggest that B. adolescentis-derived nicotinic acid could be a promising therapeutic strategy for individuals with sarcopenia.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 2","pages":"115265"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115265","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sarcopenia significantly diminishes quality of life and increases mortality risk in older adults. While the connection between the gut microbiome and muscle health is recognized, the underlying mechanisms are poorly understood. In this study, shotgun metagenomics revealed that Bifidobacterium adolescentis is notably depleted in individuals with sarcopenia, correlating with reduced muscle mass and function. This finding was validated in aged mice. Metabolomics analysis identified nicotinic acid as a key metabolite produced by B. adolescentis, linked to improvements in muscle mass and functionality in individuals with sarcopenia. Mechanistically, nicotinic acid restores nicotinamide adenine dinucleotide (NAD+) levels in muscle, inhibits the FoxO3/Atrogin-1/Murf-1 axis, and promotes satellite cell proliferation, reducing muscle atrophy. Additionally, NAD+ activation enhances the silent-information-regulator 1 (SIRT1)/peroxisome-proliferator-activated-receptor-γ-coactivator 1-alpha (PGC-1α) axis, stimulating mitochondrial biogenesis and promoting oxidative metabolism in slow-twitch fibers, ultimately improving muscle function. Our findings suggest that B. adolescentis-derived nicotinic acid could be a promising therapeutic strategy for individuals with sarcopenia.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.