In vitro study of essential oils encapsulated in chitosan microparticles against Histoplasma capsulatum and their pathogenicity in Caenorhabditis elegans.

IF 2.6 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Anderson da Cunha Costa, Mirele Rodrigues Fernandes, Augusto Feynman Dias Nobre, Maria Gleiciane Rocha, Jacó Ricarte Lima de Mesquita, Rosemeyre Souza Freire, Andre Jalles Monteiro, Rodrigo Silveira Vieira, Raimunda Sâmia Nogueira Brilhante
{"title":"<i>In vitro</i> study of essential oils encapsulated in chitosan microparticles against <i>Histoplasma capsulatum</i> and their pathogenicity in <i>Caenorhabditis elegans</i>.","authors":"Anderson da Cunha Costa, Mirele Rodrigues Fernandes, Augusto Feynman Dias Nobre, Maria Gleiciane Rocha, Jacó Ricarte Lima de Mesquita, Rosemeyre Souza Freire, Andre Jalles Monteiro, Rodrigo Silveira Vieira, Raimunda Sâmia Nogueira Brilhante","doi":"10.1080/08927014.2025.2453184","DOIUrl":null,"url":null,"abstract":"<p><p>Histoplasmosis, caused by <i>Histoplasma capsulatum</i>, poses risks for immunocompromised individuals. With limited therapeutic options, this study explores microparticles as antimicrobial delivery systems for <i>Cymbopogon flexuosus</i> and <i>Pelargonium graveolens</i> essential oils against <i>H. capsulatum</i>. The broth microdilution assay showed MICs of 32 to 128 µg/mL in filamentous phase and 8 to 64 µg/mL in yeast phase. Combining microparticles with antifungal drugs demonstrated synergistic effects in both filamentous and yeast-like forms with amphotericin B or itraconazole. Chitosan microparticles reduced <i>H. capsulatum</i> biofilm biomass and metabolic activity by about 60% at 512 µg/mL. <i>In vivo</i> evaluation with <i>Caenorhabditis elegans</i> showed <i>H. capsulatum</i> caused over 90% mortality. These findings highlight the potential use of chitosan microparticles as a delivery system for essential oils against <i>H. capsulatum</i>, especially in combination with other compounds.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":" ","pages":"1-16"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2025.2453184","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Histoplasmosis, caused by Histoplasma capsulatum, poses risks for immunocompromised individuals. With limited therapeutic options, this study explores microparticles as antimicrobial delivery systems for Cymbopogon flexuosus and Pelargonium graveolens essential oils against H. capsulatum. The broth microdilution assay showed MICs of 32 to 128 µg/mL in filamentous phase and 8 to 64 µg/mL in yeast phase. Combining microparticles with antifungal drugs demonstrated synergistic effects in both filamentous and yeast-like forms with amphotericin B or itraconazole. Chitosan microparticles reduced H. capsulatum biofilm biomass and metabolic activity by about 60% at 512 µg/mL. In vivo evaluation with Caenorhabditis elegans showed H. capsulatum caused over 90% mortality. These findings highlight the potential use of chitosan microparticles as a delivery system for essential oils against H. capsulatum, especially in combination with other compounds.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biofouling
Biofouling 生物-海洋与淡水生物学
CiteScore
5.00
自引率
7.40%
发文量
57
审稿时长
1.7 months
期刊介绍: Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion. Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context. Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信