Predicting Health Utilities Using Health Administrative Data: Leveraging Survey-linked Health Administrative Data from Ontario, Canada.

IF 3.1 4区 医学 Q1 ECONOMICS
Yue Niu, Nazire Begen, Guangyong Zou, Sisira Sarma
{"title":"Predicting Health Utilities Using Health Administrative Data: Leveraging Survey-linked Health Administrative Data from Ontario, Canada.","authors":"Yue Niu, Nazire Begen, Guangyong Zou, Sisira Sarma","doi":"10.1007/s40258-025-00947-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The quality-adjusted life year (QALY) is widely used to measure health outcome that combines the length of life and health-related quality of life (HRQoL). To be a reliable QALY measure, HRQoL measurements with a preference-based scoring algorithm need to be converted into health utilities on a scale from zero (dead) to one (perfect health). However, preference-based health utility data are often not available. We address this gap by developing a predictive model for health utilities.</p><p><strong>Objectives: </strong>To develop a predictive model for health utilities using available demographic and morbidity variables in a health administrative dataset for non-institutionalised populations in Ontario, Canada.</p><p><strong>Methods: </strong>The data were obtained from the 2009 to 2010 Canadian Community Health Survey containing Health Utilities Index Mark3 (HUI3), a generic multi-attribute preference-based health utility instrument linked with Ontario health administrative (OHA) data that were collected for administrative or billing purposes for patient encounters with the health care system. We employed four regression models (linear, Tobit, single-part beta mixture, and two-part beta mixture) and a calibration technique to identify the best-fit regression model.</p><p><strong>Results: </strong>Our findings indicate that the two-part beta mixture model is the best-fit for predicting health utilities in the OHA data. The proposed predictive model reflects the original distribution of HUI3 in the population.</p><p><strong>Conclusion: </strong>Our proposed predictive model generates reasonably accurate health utility predictions from OHA data. Our model-based prediction approach is a useful strategy for real-world applications, particularly when preference-based utility data are unavailable.</p>","PeriodicalId":8065,"journal":{"name":"Applied Health Economics and Health Policy","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Health Economics and Health Policy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40258-025-00947-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The quality-adjusted life year (QALY) is widely used to measure health outcome that combines the length of life and health-related quality of life (HRQoL). To be a reliable QALY measure, HRQoL measurements with a preference-based scoring algorithm need to be converted into health utilities on a scale from zero (dead) to one (perfect health). However, preference-based health utility data are often not available. We address this gap by developing a predictive model for health utilities.

Objectives: To develop a predictive model for health utilities using available demographic and morbidity variables in a health administrative dataset for non-institutionalised populations in Ontario, Canada.

Methods: The data were obtained from the 2009 to 2010 Canadian Community Health Survey containing Health Utilities Index Mark3 (HUI3), a generic multi-attribute preference-based health utility instrument linked with Ontario health administrative (OHA) data that were collected for administrative or billing purposes for patient encounters with the health care system. We employed four regression models (linear, Tobit, single-part beta mixture, and two-part beta mixture) and a calibration technique to identify the best-fit regression model.

Results: Our findings indicate that the two-part beta mixture model is the best-fit for predicting health utilities in the OHA data. The proposed predictive model reflects the original distribution of HUI3 in the population.

Conclusion: Our proposed predictive model generates reasonably accurate health utility predictions from OHA data. Our model-based prediction approach is a useful strategy for real-world applications, particularly when preference-based utility data are unavailable.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Health Economics and Health Policy
Applied Health Economics and Health Policy Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
6.10
自引率
2.80%
发文量
64
期刊介绍: Applied Health Economics and Health Policy provides timely publication of cutting-edge research and expert opinion from this increasingly important field, making it a vital resource for payers, providers and researchers alike. The journal includes high quality economic research and reviews of all aspects of healthcare from various perspectives and countries, designed to communicate the latest applied information in health economics and health policy. While emphasis is placed on information with practical applications, a strong basis of underlying scientific rigor is maintained.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信