{"title":"Synthesis of <i>N</i>-methyl secondary amides <i>via</i> diboronic acid anhydride-catalyzed dehydrative condensation of carboxylic acids with aqueous methylamine.","authors":"Hinata Iwasawa, Naoya Takahashi, Naoyuki Shimada","doi":"10.1039/d4ob02022g","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we present the first catalytic methodology for synthesizing <i>N</i>-methyl secondary amides <i>via</i> dehydrative condensation of hydroxycarboxylic acids with readily available and safe aqueous methylamine, employing diboronic acid anhydride (DBAA) as the catalyst. DBAA catalysis can also be applied to direct amidations using aqueous ethylamine or aqueous dimethylamine. Moreover, we demonstrate the applicability of this catalytic system for the concise synthesis of eight biologically active compounds containing β-amino alcohol motifs, including halostachine, synephrine, longimammine, phenylephrine, metanephrine, normacromerine, etilefrine, and macromerine.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ob02022g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we present the first catalytic methodology for synthesizing N-methyl secondary amides via dehydrative condensation of hydroxycarboxylic acids with readily available and safe aqueous methylamine, employing diboronic acid anhydride (DBAA) as the catalyst. DBAA catalysis can also be applied to direct amidations using aqueous ethylamine or aqueous dimethylamine. Moreover, we demonstrate the applicability of this catalytic system for the concise synthesis of eight biologically active compounds containing β-amino alcohol motifs, including halostachine, synephrine, longimammine, phenylephrine, metanephrine, normacromerine, etilefrine, and macromerine.
期刊介绍:
Organic & Biomolecular Chemistry is an international journal using integrated research in chemistry-organic chemistry. Founded in 2003 by the Royal Society of Chemistry, the journal is published in Semimonthly issues and has been indexed by SCIE, a leading international database. The journal focuses on the key research and cutting-edge progress in the field of chemistry-organic chemistry, publishes and reports the research results in this field in a timely manner, and is committed to becoming a window and platform for rapid academic exchanges among peers in this field. The journal's impact factor in 2023 is 2.9, and its CiteScore is 5.5.