Purified adipose tissue-derived extracellular vesicles facilitate adipose organoid vascularization through coordinating adipogenesis and angiogenesis.

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Congxiao Zhu, Zonglin Huang, Hongru Zhou, Xuefeng Han, Lei Li, Ningbei Yin
{"title":"Purified adipose tissue-derived extracellular vesicles facilitate adipose organoid vascularization through coordinating adipogenesis and angiogenesis.","authors":"Congxiao Zhu, Zonglin Huang, Hongru Zhou, Xuefeng Han, Lei Li, Ningbei Yin","doi":"10.1088/1758-5090/adb2e7","DOIUrl":null,"url":null,"abstract":"<p><p>One of the major challenges in the way of better fabricating vascularized adipose organoids is the destructive effect of adipogenic differentiation on preformed vasculature, which probably stems from the discrepancy between the<i>in vivo</i>physiological microenvironment and the<i>in vitro</i>culture conditions. As an intrinsic component of adipose tissue (AT), adipose tissue-derived extracellular vesicles (AT-EVs) have demonstrated both adipogenic and angiogenic ability in recent studies. However, whether AT-EVs could be employed to coordinate the angiogenesis and adipogenesis in the vascularization of adipose organoids remains largely unexplored. Herein, we present an efficient method for isolating higher-purity AT-EV preparations from lipoaspirates, and verify the superiority of AT-EV preparations' angiogenic and adipogenic capabilities over those from unpurified lipoaspirates. Next, in the spheroid culture model, it was discovered that the addition of AT-EVs could effectively improve the aggregation through enhancing intercellular adhesion of monoculture spheroids composed of human umbilical vascular endothelial cells (HUVECs), and helped produce vascularized adipose organoids with proper lipolysis and glucose uptake ability in the coculture spheroids comprised of adipose-derived stem cells (ADSCs) and HUVECs. Subsequently, it was observed that AT-EVs could exert a retaining effect on the vasculature of prevascularized coculture spheroids cultured in an adipogenic environment, compared to the reduced vascular networks where AT-EVs were absent. Altogether, these results indicate that AT-EVs, by means of releasing bioactive molecules that emulate the<i>in vivo</i>microenvironment, can modify non-replicative<i>in vitro</i>microenvironments, coordinate<i>in vitro</i>adipogenesis and angiogenesis, and facilitate the fabrication of vascularized adipose organoids.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/adb2e7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

One of the major challenges in the way of better fabricating vascularized adipose organoids is the destructive effect of adipogenic differentiation on preformed vasculature, which probably stems from the discrepancy between thein vivophysiological microenvironment and thein vitroculture conditions. As an intrinsic component of adipose tissue (AT), adipose tissue-derived extracellular vesicles (AT-EVs) have demonstrated both adipogenic and angiogenic ability in recent studies. However, whether AT-EVs could be employed to coordinate the angiogenesis and adipogenesis in the vascularization of adipose organoids remains largely unexplored. Herein, we present an efficient method for isolating higher-purity AT-EV preparations from lipoaspirates, and verify the superiority of AT-EV preparations' angiogenic and adipogenic capabilities over those from unpurified lipoaspirates. Next, in the spheroid culture model, it was discovered that the addition of AT-EVs could effectively improve the aggregation through enhancing intercellular adhesion of monoculture spheroids composed of human umbilical vascular endothelial cells (HUVECs), and helped produce vascularized adipose organoids with proper lipolysis and glucose uptake ability in the coculture spheroids comprised of adipose-derived stem cells (ADSCs) and HUVECs. Subsequently, it was observed that AT-EVs could exert a retaining effect on the vasculature of prevascularized coculture spheroids cultured in an adipogenic environment, compared to the reduced vascular networks where AT-EVs were absent. Altogether, these results indicate that AT-EVs, by means of releasing bioactive molecules that emulate thein vivomicroenvironment, can modify non-replicativein vitromicroenvironments, coordinatein vitroadipogenesis and angiogenesis, and facilitate the fabrication of vascularized adipose organoids.

纯化脂肪组织来源的细胞外囊泡通过协调脂肪生成和血管生成促进脂肪类器官血管化。
体外培养条件与体内生理微环境的差异可能导致成脂分化对预成型血管的破坏作用,这是制备血管化脂肪类器官的主要挑战之一。脂肪组织来源的细胞外囊泡(AT- evs)作为脂肪组织(AT)的固有成分,在最近的研究中显示出了脂肪生成和血管生成的能力。然而,在脂肪类器官的血管化过程中,at - ev是否可以用于协调血管生成和脂肪生成仍未得到充分的研究。在此,我们提出了一种从抽脂液中分离高纯度AT-EV制剂的有效方法,并验证了AT-EV制剂相对于未纯化的抽脂液的血管生成和脂肪生成能力的优越性。接下来,在球体培养模型中,我们发现at - ev的加入可以通过增强由人脐血管内皮细胞(HUVECs)组成的单培养球体的细胞间粘附,有效地改善其聚集,并有助于在由脂肪源性干细胞(ADSCs)和HUVECs组成的共培养球体中产生具有适当脂解和葡萄糖摄取能力的血管化脂肪类器官。随后,研究人员观察到,与没有at - ev的血管网络减少相比,at - ev可以对在成脂环境中培养的预血管化共培养球体的血管系统发挥保留作用。总之,这些结果表明,at - ev通过释放模拟体内微环境的生物活性分子,可以修饰体外非复制性微环境,协调体外脂肪生成和血管生成,促进血管化脂肪类器官的制备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信