Enhanced osteogenic differentiation in hyaluronic acid methacrylate (HAMA) matrix: a comparative study of hPDC and hBMSC spheroids for bone tissue engineering.
Ane Albillos Sanchez, Filipa Castro Teixeira, Paula Casademunt, Ivo Beeren, Lorenzo Moroni, Carlos Mota
{"title":"Enhanced osteogenic differentiation in hyaluronic acid methacrylate (HAMA) matrix: a comparative study of hPDC and hBMSC spheroids for bone tissue engineering.","authors":"Ane Albillos Sanchez, Filipa Castro Teixeira, Paula Casademunt, Ivo Beeren, Lorenzo Moroni, Carlos Mota","doi":"10.1088/1758-5090/adb2e6","DOIUrl":null,"url":null,"abstract":"<p><p>Bone tissue engineering (BTE) seeks to overcome the limitations of traditional bone repair methods, such as autografts and allografts, which are often limited by availability, donor-site morbidity, immune rejection, and infection risks. Recent advancements have highlighted the potential of spheroids or microtissues as building blocks for BTE. This study aimed to investigate the osteogenic differentiation of spheroids formed from human periosteum-derived cells (hPDCs) and bone marrow-derived mesenchymal stromal cells (hBMSCs) in a hyaluronic acid methacrylate (HAMA) matrix, using encapsulation and extrusion bioprinting methods. The results showed significant morphological changes, high viability, and osteogenic differentiation of spheroids from hPDCs or hBMSCs in three-dimensional HAMA environments. Notably, hPDC spheroids demonstrated higher mineralization capabilities and superior hydrogel colonization than hBMSC spheroids. These findings reveal the potential of HAMA bioink containing hPDC spheroids to produce mineralized bone grafts using a bioprinting approach.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/adb2e6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bone tissue engineering (BTE) seeks to overcome the limitations of traditional bone repair methods, such as autografts and allografts, which are often limited by availability, donor-site morbidity, immune rejection, and infection risks. Recent advancements have highlighted the potential of spheroids or microtissues as building blocks for BTE. This study aimed to investigate the osteogenic differentiation of spheroids formed from human periosteum-derived cells (hPDCs) and bone marrow-derived mesenchymal stromal cells (hBMSCs) in a hyaluronic acid methacrylate (HAMA) matrix, using encapsulation and extrusion bioprinting methods. The results showed significant morphological changes, high viability, and osteogenic differentiation of spheroids from hPDCs or hBMSCs in three-dimensional HAMA environments. Notably, hPDC spheroids demonstrated higher mineralization capabilities and superior hydrogel colonization than hBMSC spheroids. These findings reveal the potential of HAMA bioink containing hPDC spheroids to produce mineralized bone grafts using a bioprinting approach.
期刊介绍:
Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).