Method for Screening Sodium Cyanoborohydride for Free Cyanide Content and Its Impact on Bioconjugation Chemistry.

IF 4 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Jarrod P Cohen, Adam DiCaprio, Jian He, Mikhail Reibarkh, James Small, Matthew Schombs
{"title":"Method for Screening Sodium Cyanoborohydride for Free Cyanide Content and Its Impact on Bioconjugation Chemistry.","authors":"Jarrod P Cohen, Adam DiCaprio, Jian He, Mikhail Reibarkh, James Small, Matthew Schombs","doi":"10.1021/acs.bioconjchem.4c00514","DOIUrl":null,"url":null,"abstract":"<p><p>Sodium cyanoborohydride (CBH) is commonly used as a mild reducing agent in the reductive amination of aldehydes and free amines. Within the pharmaceutical industry, this reaction is employed in the bioconjugation of proteins and peptides. Free cyanide species such as HCN and NaCN are known residual impurities in CBH that can contribute to the formation of undesired side products including cyanoamines and cyanohydrins. In commercial processes, the potential for bound cyanated species requires an analytical control strategy to monitor and mitigate any risk to human health. Given these concerns, minimization of cyanated side products is of utmost priority and can be achieved through a robust control strategy of quantitative screening of starting materials for free cyanide. Alternative risk mitigation strategies such as purification of bound cyanide containing species to pure species are less effective due to minor chemical differences between the expected product and bound cyanide species. Herein, we present a simple chromatographic assay for the quantitation of free cyanide in the raw material sodium cyanoborohydride. Method development, robustness evaluation, and scientific soundness assessment are reported with excellent linearity, accuracy, precision, and specificity. Additionally, this method was applied for the evaluation of raw material supplied from 10 commercial sources, none of which report a specification for free cyanide within their certificate of analysis. The measured free cyanide from these vendors ranged from 8 to 80 mM concentration, thereby confirming the value of screening these raw materials. Finally, we demonstrate the impact of free cyanide on a model bioconjugation reaction between ornithine and glyceraldehyde.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.4c00514","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium cyanoborohydride (CBH) is commonly used as a mild reducing agent in the reductive amination of aldehydes and free amines. Within the pharmaceutical industry, this reaction is employed in the bioconjugation of proteins and peptides. Free cyanide species such as HCN and NaCN are known residual impurities in CBH that can contribute to the formation of undesired side products including cyanoamines and cyanohydrins. In commercial processes, the potential for bound cyanated species requires an analytical control strategy to monitor and mitigate any risk to human health. Given these concerns, minimization of cyanated side products is of utmost priority and can be achieved through a robust control strategy of quantitative screening of starting materials for free cyanide. Alternative risk mitigation strategies such as purification of bound cyanide containing species to pure species are less effective due to minor chemical differences between the expected product and bound cyanide species. Herein, we present a simple chromatographic assay for the quantitation of free cyanide in the raw material sodium cyanoborohydride. Method development, robustness evaluation, and scientific soundness assessment are reported with excellent linearity, accuracy, precision, and specificity. Additionally, this method was applied for the evaluation of raw material supplied from 10 commercial sources, none of which report a specification for free cyanide within their certificate of analysis. The measured free cyanide from these vendors ranged from 8 to 80 mM concentration, thereby confirming the value of screening these raw materials. Finally, we demonstrate the impact of free cyanide on a model bioconjugation reaction between ornithine and glyceraldehyde.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioconjugate Chemistry
Bioconjugate Chemistry 生物-化学综合
CiteScore
9.00
自引率
2.10%
发文量
236
审稿时长
1.4 months
期刊介绍: Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信