Periodic GFN1-xTB Tight Binding: A Generalized Ewald Partitioning Scheme for the Klopman-Ohno Function.

IF 5.7 1区 化学 Q2 CHEMISTRY, PHYSICAL
Alexander Buccheri, Rui Li, J Emiliano Deustua, S Mohamad Moosavi, Peter J Bygrave, Frederick R Manby
{"title":"Periodic GFN1-xTB Tight Binding: A Generalized Ewald Partitioning Scheme for the Klopman-Ohno Function.","authors":"Alexander Buccheri, Rui Li, J Emiliano Deustua, S Mohamad Moosavi, Peter J Bygrave, Frederick R Manby","doi":"10.1021/acs.jctc.4c01234","DOIUrl":null,"url":null,"abstract":"<p><p>A novel formulation is presented for the treatment of electrostatics in the periodic GFN1-xTB tight-binding model. Periodic GFN1-xTB is hindered by the functional form of the second-order electrostatics, which only recovers Coulombic behavior at large interatomic distances and lacks a closed-form solution for its Fourier transform. We address this by introducing a binomial expansion of the Klopman-Ohno function to partition short- and long-range interactions, enabling the use of a generalized Ewald summation for the solution of the electrostatic energy. This approach is general and is applicable to any damped potential of the form |<i>R</i><sup><i>n</i></sup> + <i>c</i>|<sup>-<i>m</i></sup>. Benchmarks on the X23 molecular crystal dataset and a range of prototypical bulk semiconductors demonstrate that this systematic treatment of the electrostatics eliminates unphysical behavior in the equation of state curves. In the bulk systems studied, we observe a mean absolute error in total energy of 35 meV/atom, comparable to the machine-learned universal force field, M3GNet, and sufficiently precise for structure relaxation. These results highlight the promising potential of GFN1-xTB as a universal tight-binding parametrization.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01234","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A novel formulation is presented for the treatment of electrostatics in the periodic GFN1-xTB tight-binding model. Periodic GFN1-xTB is hindered by the functional form of the second-order electrostatics, which only recovers Coulombic behavior at large interatomic distances and lacks a closed-form solution for its Fourier transform. We address this by introducing a binomial expansion of the Klopman-Ohno function to partition short- and long-range interactions, enabling the use of a generalized Ewald summation for the solution of the electrostatic energy. This approach is general and is applicable to any damped potential of the form |Rn + c|-m. Benchmarks on the X23 molecular crystal dataset and a range of prototypical bulk semiconductors demonstrate that this systematic treatment of the electrostatics eliminates unphysical behavior in the equation of state curves. In the bulk systems studied, we observe a mean absolute error in total energy of 35 meV/atom, comparable to the machine-learned universal force field, M3GNet, and sufficiently precise for structure relaxation. These results highlight the promising potential of GFN1-xTB as a universal tight-binding parametrization.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation 化学-物理:原子、分子和化学物理
CiteScore
9.90
自引率
16.40%
发文量
568
审稿时长
1 months
期刊介绍: The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信