{"title":"MXenes: Are They Ready for Direct Air Capture of CO2?","authors":"Konok Chandra Bhowmik, Md Arafat Rahman, Yunus Ahmed, Tasmia Binte Hai","doi":"10.1002/asia.202401822","DOIUrl":null,"url":null,"abstract":"<p><p>Although Direct Air Capture (DAC) of CO2 is a potential technology for climate change mitigation, the cost, scalability, and efficiency of existing materials and techniques are severely limited. MXenes, a type of two-dimensional materials, have drawn interest due to their remarkable conductivity, enormous surface area, and adjustable chemistry, however, their potential for DAC has not yet been thoroughly investigated. Recent developments in MXene synthesis and functionalization are comprehensively reviewed, with an emphasis on how these characteristics might be used to enhance improve CO2 adsorption and capture efficiency. In addition, the difficulties of stability, scalability, and economic feasibility for real-world applications are evaluated. Our findings demonstrate the great potential of MXenes for DAC and offer fresh perspectives on how their special qualities might overcome current constraints. This study presents a new viewpoint on MXenes as a feasible CO2 capture option, indicating new avenues for future research and development, even though further optimization is required.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":" ","pages":"e202401822"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1002/asia.202401822","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Although Direct Air Capture (DAC) of CO2 is a potential technology for climate change mitigation, the cost, scalability, and efficiency of existing materials and techniques are severely limited. MXenes, a type of two-dimensional materials, have drawn interest due to their remarkable conductivity, enormous surface area, and adjustable chemistry, however, their potential for DAC has not yet been thoroughly investigated. Recent developments in MXene synthesis and functionalization are comprehensively reviewed, with an emphasis on how these characteristics might be used to enhance improve CO2 adsorption and capture efficiency. In addition, the difficulties of stability, scalability, and economic feasibility for real-world applications are evaluated. Our findings demonstrate the great potential of MXenes for DAC and offer fresh perspectives on how their special qualities might overcome current constraints. This study presents a new viewpoint on MXenes as a feasible CO2 capture option, indicating new avenues for future research and development, even though further optimization is required.
期刊介绍:
Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics.
Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews.
A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal.
Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).