Single compound data supplementation to enhance transferability of fermentation specific Raman spectroscopy models.

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Analytical and Bioanalytical Chemistry Pub Date : 2025-04-01 Epub Date: 2025-02-06 DOI:10.1007/s00216-025-05768-5
Maarten Klaverdijk, Marcel Ottens, Marieke E Klijn
{"title":"Single compound data supplementation to enhance transferability of fermentation specific Raman spectroscopy models.","authors":"Maarten Klaverdijk, Marcel Ottens, Marieke E Klijn","doi":"10.1007/s00216-025-05768-5","DOIUrl":null,"url":null,"abstract":"<p><p>Raman spectroscopy is a valuable analytical tool for real-time analyte quantification in fermentation processes. Quantification is performed with chemometric models that translate Raman spectra into concentration values, which are typically calibrated with process data from multiple comparable fermentations. However, process-specific models underperform for minor process variation(s) or different operation modes due to the integration of cross-correlations, resulting in low target analyte specificity. Thus, model transferability is poor and labor-intensive (re-)calibration of models is required for related processes. In this work, partial least-squares models for glucose, ethanol, and biomass were calibrated with Saccharomyces cerevisiae batch fermentation data and subsequently transferred to a fed-batch operation. To enhance model transferability without additional process runs, single compound data supplementation was performed. The supplemented models increased overall target analyte specificity and demonstrated sufficient prediction accuracy for the fed-batch process (root-mean-square errors of prediction (RMSEP) of 3.06 mM, 8.65 mM, and 0.99 g/L for glucose, ethanol, and biomass), while maintaining high prediction accuracy for the batch process (RMSEP of 1.71 mM, 4.20 mM, and 0.17 g/L for glucose, ethanol, and biomass). This work showcases that process data in combination with single compound spectra is a fast and efficient strategy to apply Raman spectroscopy for real-time process monitoring across related processes.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"1873-1884"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914363/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-025-05768-5","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Raman spectroscopy is a valuable analytical tool for real-time analyte quantification in fermentation processes. Quantification is performed with chemometric models that translate Raman spectra into concentration values, which are typically calibrated with process data from multiple comparable fermentations. However, process-specific models underperform for minor process variation(s) or different operation modes due to the integration of cross-correlations, resulting in low target analyte specificity. Thus, model transferability is poor and labor-intensive (re-)calibration of models is required for related processes. In this work, partial least-squares models for glucose, ethanol, and biomass were calibrated with Saccharomyces cerevisiae batch fermentation data and subsequently transferred to a fed-batch operation. To enhance model transferability without additional process runs, single compound data supplementation was performed. The supplemented models increased overall target analyte specificity and demonstrated sufficient prediction accuracy for the fed-batch process (root-mean-square errors of prediction (RMSEP) of 3.06 mM, 8.65 mM, and 0.99 g/L for glucose, ethanol, and biomass), while maintaining high prediction accuracy for the batch process (RMSEP of 1.71 mM, 4.20 mM, and 0.17 g/L for glucose, ethanol, and biomass). This work showcases that process data in combination with single compound spectra is a fast and efficient strategy to apply Raman spectroscopy for real-time process monitoring across related processes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
4.70%
发文量
638
审稿时长
2.1 months
期刊介绍: Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信