C-phycocyanin and quaternized chitosan based antibiotic-free hydrogels with antioxidant and antibacterial activity for wound healing.

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Susu Zhang, Congcong Huang, Zengyu Sun, Penghua Jiao, Baoqi Ding, Luyao Ding, Qianfen Qi, Yanzhe Gou, Renlong Zhang, Yanhao He, Wenjun Li, Chunguang Ren, Linlin Wang
{"title":"C-phycocyanin and quaternized chitosan based antibiotic-free hydrogels with antioxidant and antibacterial activity for wound healing.","authors":"Susu Zhang, Congcong Huang, Zengyu Sun, Penghua Jiao, Baoqi Ding, Luyao Ding, Qianfen Qi, Yanzhe Gou, Renlong Zhang, Yanhao He, Wenjun Li, Chunguang Ren, Linlin Wang","doi":"10.1016/j.ijbiomac.2025.140647","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogels with antioxidant and antibacterial activities have received increasing attention in wound healing due to excessive reactive oxygen species (ROS) and bacterial infection are common issues associated with wounds. Herein, we constructed a series of hydrogels with C-phycocyanin (C-PC), quaternized chitosan (QCS) and silk fibroin protein (SF) as matrixes, which with tetrakis hydroxymethyl phosphonium sulfate (THPS) as crosslinking agent to form dynamic covalent bonds with C-PC and SF. The hydrogel exhibited excellent stretchability and compressibility, which with adhesion strength reached 15 ± 3 kPa and rapid self-healing properties. The hydrogel possessed strong antioxidant activity with assessments of DPPH radical-scavenging capacity and total reducing power. In addition, the hydrogel possessed obvious coagulation function and good blood compatibility, which also showed strong antibacterial activity against E. coli and S. aureus. To improve the therapeutic effect, polydeoxyribonucleotide (PDRN) with the ability of promote wound healing was introduced into the hydrogel. The results showed that the hydrogel loading with PDRN possessed high biocompatibility and can promote cell migration. More importantly, the hydrogel loaded with PDRN can effectively promote wound healing by exerting anti-inflammatory and antioxidant effects, which may offer promising potential application value in the field of wound dressing and tissue repair.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140647"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.140647","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogels with antioxidant and antibacterial activities have received increasing attention in wound healing due to excessive reactive oxygen species (ROS) and bacterial infection are common issues associated with wounds. Herein, we constructed a series of hydrogels with C-phycocyanin (C-PC), quaternized chitosan (QCS) and silk fibroin protein (SF) as matrixes, which with tetrakis hydroxymethyl phosphonium sulfate (THPS) as crosslinking agent to form dynamic covalent bonds with C-PC and SF. The hydrogel exhibited excellent stretchability and compressibility, which with adhesion strength reached 15 ± 3 kPa and rapid self-healing properties. The hydrogel possessed strong antioxidant activity with assessments of DPPH radical-scavenging capacity and total reducing power. In addition, the hydrogel possessed obvious coagulation function and good blood compatibility, which also showed strong antibacterial activity against E. coli and S. aureus. To improve the therapeutic effect, polydeoxyribonucleotide (PDRN) with the ability of promote wound healing was introduced into the hydrogel. The results showed that the hydrogel loading with PDRN possessed high biocompatibility and can promote cell migration. More importantly, the hydrogel loaded with PDRN can effectively promote wound healing by exerting anti-inflammatory and antioxidant effects, which may offer promising potential application value in the field of wound dressing and tissue repair.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
文献相关原料
公司名称
产品信息
阿拉丁
Quaternized chitosan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信