Javier Vicente, Anne Friedrich, Joseph Schacherer, Kelle Freel, Domingo Marquina, Antonio Santos
{"title":"Whole-Genome Sequencing and Phenotyping Reveal Specific Adaptations of Lachancea thermotolerans to the Winemaking Environment.","authors":"Javier Vicente, Anne Friedrich, Joseph Schacherer, Kelle Freel, Domingo Marquina, Antonio Santos","doi":"10.1111/mec.17667","DOIUrl":null,"url":null,"abstract":"<p><p>Adaptation to the environment plays an essential role in yeast evolution as a consequence of selective pressures. Lachancea thermotolerans, a yeast related to fermentation and one of the current trends in wine technology research, has undergone an anthropisation process, leading to a notable genomic and phenomic differentiation. Using whole-genome sequencing, of 145 L. thermotolerans strains, we identified six well-defined groups primarily delineated by their ecological origin and exhibiting high levels of genetic diversity. Anthropised strains showed lower genetic diversity due to the selective pressure imposed by the winemaking environment. Strong evidence of anthropisation and adaptation to the wine environment through modification of gene content was also found. Differences in genes involved in the assimilation of alternative carbon and nitrogen sources, such as the MAL31 and DAL5 genes, which confer greater fitness in the winemaking environment, were observed. Additionally, we found that phenotypic traits considered domestication hallmarks are present in anthropised strains. Among these, increased fitness in the presence of ethanol and sulphites, assimilation of non-fermentable carbon sources, and lower levels of residual fructose under fermentative conditions highlight. We hypothesise that lactic acid production in the Saccharomyces-Lachancea lineage is an anthropisation signature linked to winemaking, resulting from the loss of respiratory chain complex I and the evolutionary preference for fermentation over respiration, even in the presence of oxygen. Overall, the results of this work provide valuable insight into the anthropisation process in L. thermotolerans and demonstrate how fermentation environments give rise to similar adaptations in different yeast species.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17667"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17667","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Adaptation to the environment plays an essential role in yeast evolution as a consequence of selective pressures. Lachancea thermotolerans, a yeast related to fermentation and one of the current trends in wine technology research, has undergone an anthropisation process, leading to a notable genomic and phenomic differentiation. Using whole-genome sequencing, of 145 L. thermotolerans strains, we identified six well-defined groups primarily delineated by their ecological origin and exhibiting high levels of genetic diversity. Anthropised strains showed lower genetic diversity due to the selective pressure imposed by the winemaking environment. Strong evidence of anthropisation and adaptation to the wine environment through modification of gene content was also found. Differences in genes involved in the assimilation of alternative carbon and nitrogen sources, such as the MAL31 and DAL5 genes, which confer greater fitness in the winemaking environment, were observed. Additionally, we found that phenotypic traits considered domestication hallmarks are present in anthropised strains. Among these, increased fitness in the presence of ethanol and sulphites, assimilation of non-fermentable carbon sources, and lower levels of residual fructose under fermentative conditions highlight. We hypothesise that lactic acid production in the Saccharomyces-Lachancea lineage is an anthropisation signature linked to winemaking, resulting from the loss of respiratory chain complex I and the evolutionary preference for fermentation over respiration, even in the presence of oxygen. Overall, the results of this work provide valuable insight into the anthropisation process in L. thermotolerans and demonstrate how fermentation environments give rise to similar adaptations in different yeast species.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms