Design and Optimization of an Origami Gripper for Versatile Grasping and Manipulation

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Hanwen Cao, Jianshu Zhou, Kai Chen, Qiguang He, Qi Dou, Yun-Hui Liu
{"title":"Design and Optimization of an Origami Gripper for Versatile Grasping and Manipulation","authors":"Hanwen Cao,&nbsp;Jianshu Zhou,&nbsp;Kai Chen,&nbsp;Qiguang He,&nbsp;Qi Dou,&nbsp;Yun-Hui Liu","doi":"10.1002/aisy.202400271","DOIUrl":null,"url":null,"abstract":"<p>Robotic grasping and manipulation demand the ability to handle a multitude of objects with different shapes, sizes, quantities, surface smoothness, vulnerability, and stiffness, which is challenging without prior knowledge about object properties. Herein, a novel origami-inspired gripper for universal grasping is presented. The innovative structure seamlessly transforms a simple uniaxial pulling motion into a flexible and robust envelope or pinch grasp, enabling it to tackle various scenarios. The origami gripper offers distinctive advantages, including scalable and optimizable design, grasping compliance and robustness, providing material flexibility, and providing solutions to challenging manipulation tasks. The working principles of the origami gripper are characterized and analyzed. An optimization-based inverse design method is presented to adjust gripper properties for various scenarios. Through comprehensive experimentation and evaluation, the gripper's capabilities to grasp various objects with a wide range of distinctive properties, including ultrasoft, slippery, granular, and multiple objects, which is a challenge for the existing robotic grippers, are demonstrated. The research holds promise for transformative applications in areas such as the food industry, waste handling, fine and fragile objects grasping, and environmental sampling.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 12","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400271","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Robotic grasping and manipulation demand the ability to handle a multitude of objects with different shapes, sizes, quantities, surface smoothness, vulnerability, and stiffness, which is challenging without prior knowledge about object properties. Herein, a novel origami-inspired gripper for universal grasping is presented. The innovative structure seamlessly transforms a simple uniaxial pulling motion into a flexible and robust envelope or pinch grasp, enabling it to tackle various scenarios. The origami gripper offers distinctive advantages, including scalable and optimizable design, grasping compliance and robustness, providing material flexibility, and providing solutions to challenging manipulation tasks. The working principles of the origami gripper are characterized and analyzed. An optimization-based inverse design method is presented to adjust gripper properties for various scenarios. Through comprehensive experimentation and evaluation, the gripper's capabilities to grasp various objects with a wide range of distinctive properties, including ultrasoft, slippery, granular, and multiple objects, which is a challenge for the existing robotic grippers, are demonstrated. The research holds promise for transformative applications in areas such as the food industry, waste handling, fine and fragile objects grasping, and environmental sampling.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信