{"title":"Measuring the Burgers vector of dislocations with dark-field X-ray microscopy","authors":"Dayeeta Pal, Yifan Wang, Ramya Gurunathan, Leora Dresselhaus-Marais","doi":"10.1107/S1600576724011968","DOIUrl":null,"url":null,"abstract":"<p>The subsurface dynamics of dislocations are essential to many properties of bulk crystalline materials. However, it is challenging to characterize a bulk crystal by conventional transmission electron microscopy (TEM) due to the limited penetration depth of electrons. A novel X-ray imaging technique – dark-field X-ray microscopy (DFXM) – was developed to image hierarchical dislocation structures in bulk crystals. While today's DFXM can effectively map the line structures of dislocations, it is still challenging to quantify the Burgers vectors, the key characterization governing the dislocation behaviors. We extend the `invisibility criterion' formalism from the TEM theory to the geometrical-optics model of DFXM and demonstrate the consistency between DFXM and dark-field TEM using multi-diffraction-peak imaging for a single edge dislocation. Due to the practical difficulty of multi-peak DFXM experiments, we further study how the Burgers vector effect is encoded for a single-peak DFXM experiment. Using the geometrical-optics DFXM simulation, we explore the asymmetry of rocking tilt scans at different rolling tilts and develop a new method to characterize the Burgers vector. The conclusions of this study advance our understanding of the use of DFXM in characterizing individual dislocations, enabling the connection from bulk DFXM imaging to dislocation mechanics.</p>","PeriodicalId":48737,"journal":{"name":"Journal of Applied Crystallography","volume":"58 1","pages":"207-220"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1107/S1600576724011968","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The subsurface dynamics of dislocations are essential to many properties of bulk crystalline materials. However, it is challenging to characterize a bulk crystal by conventional transmission electron microscopy (TEM) due to the limited penetration depth of electrons. A novel X-ray imaging technique – dark-field X-ray microscopy (DFXM) – was developed to image hierarchical dislocation structures in bulk crystals. While today's DFXM can effectively map the line structures of dislocations, it is still challenging to quantify the Burgers vectors, the key characterization governing the dislocation behaviors. We extend the `invisibility criterion' formalism from the TEM theory to the geometrical-optics model of DFXM and demonstrate the consistency between DFXM and dark-field TEM using multi-diffraction-peak imaging for a single edge dislocation. Due to the practical difficulty of multi-peak DFXM experiments, we further study how the Burgers vector effect is encoded for a single-peak DFXM experiment. Using the geometrical-optics DFXM simulation, we explore the asymmetry of rocking tilt scans at different rolling tilts and develop a new method to characterize the Burgers vector. The conclusions of this study advance our understanding of the use of DFXM in characterizing individual dislocations, enabling the connection from bulk DFXM imaging to dislocation mechanics.
期刊介绍:
Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.