Classification of Vaginal Cleanliness Grades through Surface-Enhanced Raman Spectral Analysis via The Deep-Learning Variational Autoencoder–Long Short-Term Memory Model

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Jia-Wei Tang, Xin-Ru Wen, Hui-Min Chen, Jie Chen, Kun-Hui Hong, Quan Yuan, Muhammad Usman, Liang Wang
{"title":"Classification of Vaginal Cleanliness Grades through Surface-Enhanced Raman Spectral Analysis via The Deep-Learning Variational Autoencoder–Long Short-Term Memory Model","authors":"Jia-Wei Tang,&nbsp;Xin-Ru Wen,&nbsp;Hui-Min Chen,&nbsp;Jie Chen,&nbsp;Kun-Hui Hong,&nbsp;Quan Yuan,&nbsp;Muhammad Usman,&nbsp;Liang Wang","doi":"10.1002/aisy.202400587","DOIUrl":null,"url":null,"abstract":"<p>In this study, it is aimed to establish a novel method based on a deep-learning-guided surface-enhanced Raman spectroscopy (SERS) technique to achieve rapid and accurate classification of vaginal cleanliness levels. We proposed a variational autoencoder (VAE) approach to enhance spectral quality, coupled with a deep learning algorithm long short-term memory (LSTM) neural network to analyze SERS spectra produced by vaginal secretions. The performance of various machine learning (ML) algorithms is assessed using multiple evaluation metrics. Finally, the reliability of the optimal model is tested using blind test data (<i>N</i> = 10/group for each cleanliness level). The data quality of the SERS fingerprints of four types of vaginal secretions is significantly improved after VAE decoding and reconstruction. The signal-to-noise ratio of the generated spectra increased from the original 2.58–11.13. Among all algorithms, the VAE–LSTM algorithm demonstrates the best prediction ability and time efficiency. Additionally, blind test datasets yielded an overall accuracy of 85%. In this study, it is concluded that the deep-learning-guided SERS technique holds significant potential in rapidly distinguishing between different levels of vaginal cleanliness through human vaginal secretion samples. This contributes to the efficient diagnosis of vaginal cleanliness levels in clinical settings.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 12","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400587","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, it is aimed to establish a novel method based on a deep-learning-guided surface-enhanced Raman spectroscopy (SERS) technique to achieve rapid and accurate classification of vaginal cleanliness levels. We proposed a variational autoencoder (VAE) approach to enhance spectral quality, coupled with a deep learning algorithm long short-term memory (LSTM) neural network to analyze SERS spectra produced by vaginal secretions. The performance of various machine learning (ML) algorithms is assessed using multiple evaluation metrics. Finally, the reliability of the optimal model is tested using blind test data (N = 10/group for each cleanliness level). The data quality of the SERS fingerprints of four types of vaginal secretions is significantly improved after VAE decoding and reconstruction. The signal-to-noise ratio of the generated spectra increased from the original 2.58–11.13. Among all algorithms, the VAE–LSTM algorithm demonstrates the best prediction ability and time efficiency. Additionally, blind test datasets yielded an overall accuracy of 85%. In this study, it is concluded that the deep-learning-guided SERS technique holds significant potential in rapidly distinguishing between different levels of vaginal cleanliness through human vaginal secretion samples. This contributes to the efficient diagnosis of vaginal cleanliness levels in clinical settings.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信