{"title":"A method based on BRD/BRRD for moving target localisation with minimal transmitters","authors":"Mingzhu Yan, Haihong Tao, Le Wang","doi":"10.1049/rsn2.12663","DOIUrl":null,"url":null,"abstract":"<p>During the procedure of three-dimensional (3D) moving target localisation in multistatic passive radar (MPR) system, conventional closed-form algorithms and their enhanced versions necessitate at least four transmitters to obtain unambiguous localisation, and they are prone to poor noise resistance. In this paper, based on multiple sets of bistatic range difference (BRD) and bistatic range rate difference (BRRD) measurements, an innovative closed-form algorithm is proposed which, combines an improved two-step weighted least squares (ITSWLS) using the Newton method (NM) to minimise the number of transmitters required for localization. In a 3D environment, this algorithm can precisely localise targets with merely three transmitters. Compared with the existing closed-form algorithms, this algorithm saves one transmitter resource, breaking through the constraints of traditional approaches. After theoretical analysis and simulation verification, in the presence of just three transmitters, the estimation accuracy of the algorithm for both near-field and far-field target parameters can reach the Cramér–Rao lower bound (CRLB) when the measurement noise is low. If an additional transmitter is incorporated, this algorithm has higher localization accuracy and better noise resistance compared to the elliptic localization (EL), TSWLS, ITSWLS, and Taylor algorithms.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"18 12","pages":"2617-2629"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12663","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12663","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
During the procedure of three-dimensional (3D) moving target localisation in multistatic passive radar (MPR) system, conventional closed-form algorithms and their enhanced versions necessitate at least four transmitters to obtain unambiguous localisation, and they are prone to poor noise resistance. In this paper, based on multiple sets of bistatic range difference (BRD) and bistatic range rate difference (BRRD) measurements, an innovative closed-form algorithm is proposed which, combines an improved two-step weighted least squares (ITSWLS) using the Newton method (NM) to minimise the number of transmitters required for localization. In a 3D environment, this algorithm can precisely localise targets with merely three transmitters. Compared with the existing closed-form algorithms, this algorithm saves one transmitter resource, breaking through the constraints of traditional approaches. After theoretical analysis and simulation verification, in the presence of just three transmitters, the estimation accuracy of the algorithm for both near-field and far-field target parameters can reach the Cramér–Rao lower bound (CRLB) when the measurement noise is low. If an additional transmitter is incorporated, this algorithm has higher localization accuracy and better noise resistance compared to the elliptic localization (EL), TSWLS, ITSWLS, and Taylor algorithms.
期刊介绍:
IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications.
Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.