{"title":"Master–slave strategy based on fuzzy control for SOC recovery in the BESS FM process","authors":"Ningning Li, Meiru Chen, Mingfei Ban, Yiqi Liu","doi":"10.1049/pel2.12829","DOIUrl":null,"url":null,"abstract":"<p>Conventional units can regulate grid frequency but often face challenges such as slow response times and accelerated aging. As a solution for frequency modulation (FM), the battery energy storage system offers a promising alternative, enabling efficient frequency regulation while maintaining the state of charge (SOC) within an optimal range. This article proposes a master–slave FM strategy based on fuzzy control to facilitate SOC restoration during the FM process. Initially, the principles of FM for both control types are examined, focusing on the output characteristics of virtual sag control and virtual inertia control. Subsequently, a collaborative output approach combining sag control and inertia control is presented as the primary FM strategy, where frequency changes are analysed, and frequency deviations and SOC are regionally categorized. An adaptive regulator is then designed to dynamically allocate weights to the outputs of the sag and inertia slave FM controls. Finally, simulation results validate the effectiveness and feasibility of the proposed master–slave FM strategy. Under conditions of continuous load disturbance, the strategy demonstrates a 4.07% improvement in SOC recovery compared to conventional control strategies that coordinate outputs through sag and inertia control.</p>","PeriodicalId":56302,"journal":{"name":"IET Power Electronics","volume":"17 16","pages":"2829-2841"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12829","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12829","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional units can regulate grid frequency but often face challenges such as slow response times and accelerated aging. As a solution for frequency modulation (FM), the battery energy storage system offers a promising alternative, enabling efficient frequency regulation while maintaining the state of charge (SOC) within an optimal range. This article proposes a master–slave FM strategy based on fuzzy control to facilitate SOC restoration during the FM process. Initially, the principles of FM for both control types are examined, focusing on the output characteristics of virtual sag control and virtual inertia control. Subsequently, a collaborative output approach combining sag control and inertia control is presented as the primary FM strategy, where frequency changes are analysed, and frequency deviations and SOC are regionally categorized. An adaptive regulator is then designed to dynamically allocate weights to the outputs of the sag and inertia slave FM controls. Finally, simulation results validate the effectiveness and feasibility of the proposed master–slave FM strategy. Under conditions of continuous load disturbance, the strategy demonstrates a 4.07% improvement in SOC recovery compared to conventional control strategies that coordinate outputs through sag and inertia control.
期刊介绍:
IET Power Electronics aims to attract original research papers, short communications, review articles and power electronics related educational studies. The scope covers applications and technologies in the field of power electronics with special focus on cost-effective, efficient, power dense, environmental friendly and robust solutions, which includes:
Applications:
Electric drives/generators, renewable energy, industrial and consumable applications (including lighting, welding, heating, sub-sea applications, drilling and others), medical and military apparatus, utility applications, transport and space application, energy harvesting, telecommunications, energy storage management systems, home appliances.
Technologies:
Circuits: all type of converter topologies for low and high power applications including but not limited to: inverter, rectifier, dc/dc converter, power supplies, UPS, ac/ac converter, resonant converter, high frequency converter, hybrid converter, multilevel converter, power factor correction circuits and other advanced topologies.
Components and Materials: switching devices and their control, inductors, sensors, transformers, capacitors, resistors, thermal management, filters, fuses and protection elements and other novel low-cost efficient components/materials.
Control: techniques for controlling, analysing, modelling and/or simulation of power electronics circuits and complete power electronics systems.
Design/Manufacturing/Testing: new multi-domain modelling, assembling and packaging technologies, advanced testing techniques.
Environmental Impact: Electromagnetic Interference (EMI) reduction techniques, Electromagnetic Compatibility (EMC), limiting acoustic noise and vibration, recycling techniques, use of non-rare material.
Education: teaching methods, programme and course design, use of technology in power electronics teaching, virtual laboratory and e-learning and fields within the scope of interest.
Special Issues. Current Call for papers:
Harmonic Mitigation Techniques and Grid Robustness in Power Electronic-Based Power Systems - https://digital-library.theiet.org/files/IET_PEL_CFP_HMTGRPEPS.pdf