In situ techniques for Li-rechargeable battery analysis

IF 19.5 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Carbon Energy Pub Date : 2024-11-28 DOI:10.1002/cey2.549
Seongeun Lee, Sangbin Park, Wontae Lee, Jangwhan Seok, Jae-Uk Kim, Jongsoon Kim, Won-Sub Yoon
{"title":"In situ techniques for Li-rechargeable battery analysis","authors":"Seongeun Lee,&nbsp;Sangbin Park,&nbsp;Wontae Lee,&nbsp;Jangwhan Seok,&nbsp;Jae-Uk Kim,&nbsp;Jongsoon Kim,&nbsp;Won-Sub Yoon","doi":"10.1002/cey2.549","DOIUrl":null,"url":null,"abstract":"<p>Reducing our carbon footprint is one of the most pressing issues facing humanity today. The technology of Li-rechargeable batteries is permeating every corner of our lives as a result of our efforts to reduce the use of carbon energy. Batteries can be seen metaphorically as “living cells”, and approaching the future of that technology requires observing and understanding the real-time phenomena that occur inside battery systems during (electro)chemical reactions. In this regard, in situ analysis techniques have made significant progress toward understanding the basic science of battery systems and finding better performance-improving factors. There are various analysis methods utilizing electromagnetic waves, electrons, and neutrons to perform multifaceted analyses of battery systems from the atomic to the macroscopic scale. Now is the opportune moment to construct a comprehensive guide that facilitates the design of advanced Li-rechargeable battery systems, adopting a highly discerning and all-encompassing approach toward these cutting-edge technologies. In this review article, we discuss and organize the key components such as capabilities, limitations, and practical tips with a comprehensive perspective on various in situ techniques. Moreover, this article covers a wide range of information from the nano to the micrometer scale, such as electronic, atomic, crystal, and morphological structures, from stereoscopic perspectives considering the probing depth.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 12","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.549","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.549","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Reducing our carbon footprint is one of the most pressing issues facing humanity today. The technology of Li-rechargeable batteries is permeating every corner of our lives as a result of our efforts to reduce the use of carbon energy. Batteries can be seen metaphorically as “living cells”, and approaching the future of that technology requires observing and understanding the real-time phenomena that occur inside battery systems during (electro)chemical reactions. In this regard, in situ analysis techniques have made significant progress toward understanding the basic science of battery systems and finding better performance-improving factors. There are various analysis methods utilizing electromagnetic waves, electrons, and neutrons to perform multifaceted analyses of battery systems from the atomic to the macroscopic scale. Now is the opportune moment to construct a comprehensive guide that facilitates the design of advanced Li-rechargeable battery systems, adopting a highly discerning and all-encompassing approach toward these cutting-edge technologies. In this review article, we discuss and organize the key components such as capabilities, limitations, and practical tips with a comprehensive perspective on various in situ techniques. Moreover, this article covers a wide range of information from the nano to the micrometer scale, such as electronic, atomic, crystal, and morphological structures, from stereoscopic perspectives considering the probing depth.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Energy
Carbon Energy Multiple-
CiteScore
25.70
自引率
10.70%
发文量
116
审稿时长
4 weeks
期刊介绍: Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信