Impact analysis on distribution network due to coordinated electric ferry charging

IF 1.6 Q4 ENERGY & FUELS
Rajib Baran Roy, Sanath Alahakoon, Piet Janse Van Rensburg, Shantha Jayasinghe Arachchillage
{"title":"Impact analysis on distribution network due to coordinated electric ferry charging","authors":"Rajib Baran Roy,&nbsp;Sanath Alahakoon,&nbsp;Piet Janse Van Rensburg,&nbsp;Shantha Jayasinghe Arachchillage","doi":"10.1049/esi2.12165","DOIUrl":null,"url":null,"abstract":"<p>The maritime industry is a significant emitter of greenhouse gases in marine ecosystems, prompting a global shift towards renewable-powered electric vessels, where energy storage is pivotal. The authors examine the potential ramifications of coordinating the charging of Electric Ferries (EFs) on local distribution networks, with Gladstone Marina in Queensland, Australia, serving as a case study. Employing OpenDSS software for power flow analysis, the authors utilise actual load data and simulate a network with four Battery Energy Storage Systems (BESSs) representing proposed charging stations. The authors discuss the impact on bus voltage, load current, and power flow by integrating a storage controller to optimise BESS charging and discharging dynamics. The Dynamic Link Library (DLL) of MATLAB Simulink-based BESS's dynamic model is linked with OpenDSS environment to replicate the actual electric ferry storage. Additionally, a user-written DLL in Python regulates BESS charging and discharging by the storage controller according to load demand and BESS State of Charge for ensuring efficient operation within the network. The power flow results without inclusion of BESSs to the network, referred to as the base case, are used for relative comparison with the results in the coordinated mode. The power flow analysis suggests that bus voltages rise by approximately 1%–1.5%, while load current consumption decreases by around 2%–2.5% compared to the base case with variable load. Selected lines and transformers maintain consistent power flows. Notably, a reduction in total power consumption and losses is observed, particularly under an 80% load demand increase. These findings indicate that the coordinated mode with a storage controller effectively manages BESS charging and discharging according to demand. Moreover, the storage controller ensures system parameters remain within permissible limits. The support of real and reactive power by BESSs during peak hours validates their role as peak shavers for the test network, suggesting that EFs can operate in either Grid to Ferry mode during charging and Ferry to Grid mode during discharging.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"6 4","pages":"638-663"},"PeriodicalIF":1.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12165","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Energy Systems Integration","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/esi2.12165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The maritime industry is a significant emitter of greenhouse gases in marine ecosystems, prompting a global shift towards renewable-powered electric vessels, where energy storage is pivotal. The authors examine the potential ramifications of coordinating the charging of Electric Ferries (EFs) on local distribution networks, with Gladstone Marina in Queensland, Australia, serving as a case study. Employing OpenDSS software for power flow analysis, the authors utilise actual load data and simulate a network with four Battery Energy Storage Systems (BESSs) representing proposed charging stations. The authors discuss the impact on bus voltage, load current, and power flow by integrating a storage controller to optimise BESS charging and discharging dynamics. The Dynamic Link Library (DLL) of MATLAB Simulink-based BESS's dynamic model is linked with OpenDSS environment to replicate the actual electric ferry storage. Additionally, a user-written DLL in Python regulates BESS charging and discharging by the storage controller according to load demand and BESS State of Charge for ensuring efficient operation within the network. The power flow results without inclusion of BESSs to the network, referred to as the base case, are used for relative comparison with the results in the coordinated mode. The power flow analysis suggests that bus voltages rise by approximately 1%–1.5%, while load current consumption decreases by around 2%–2.5% compared to the base case with variable load. Selected lines and transformers maintain consistent power flows. Notably, a reduction in total power consumption and losses is observed, particularly under an 80% load demand increase. These findings indicate that the coordinated mode with a storage controller effectively manages BESS charging and discharging according to demand. Moreover, the storage controller ensures system parameters remain within permissible limits. The support of real and reactive power by BESSs during peak hours validates their role as peak shavers for the test network, suggesting that EFs can operate in either Grid to Ferry mode during charging and Ferry to Grid mode during discharging.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Energy Systems Integration
IET Energy Systems Integration Engineering-Engineering (miscellaneous)
CiteScore
5.90
自引率
8.30%
发文量
29
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信