{"title":"Heteroatom-induced tensile strain in copper lattice boosts CO2 electroreduction toward multi-carbon products","authors":"Zhiyang Zhai, Deliang Li, Xin Lu, Huizhu Cai, Qi Hu, Hengpan Yang, Chuanxin He","doi":"10.1002/cey2.648","DOIUrl":null,"url":null,"abstract":"<p>Strain engineering on metal-based catalysts has been utilized as an efficacious strategy to regulate the mechanism and pathways in various electrocatalytic reactions. However, controlling strain and establishing the strain-activity relationship still remain significant challenges. Herein, three different and continuous tensile strains (CuPd-1.90%, CuAu-3.37%, and CuAg-4.33%) are successfully induced by introducing heteroatoms with different atomic radius. The catalytic performances of CuPd-1.90%, CuAu-3.37%, and CuAg-4.33% display a positive correlation against tensile strains in electrochemical CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR). Specifically, CuAg-4.33% exhibits superior catalytic performance with a 77.9% Faradaic efficiency of multi-carbon products at −300 mA cm<sup>−2</sup> current density, significantly higher than those of pristine Cu (Cu-0%). Theoretical calculations and in situ spectroscopies verify that tensile strain can affect the d-band center of Cu, thereby altering the binding energy of *CO intermediates and Gibbs free energies of the C–C coupling procedure. This work might highlight a new method for precisely regulating the lattice strain of metallic catalysts in different electrocatalytic reactions.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 12","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.648","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.648","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Strain engineering on metal-based catalysts has been utilized as an efficacious strategy to regulate the mechanism and pathways in various electrocatalytic reactions. However, controlling strain and establishing the strain-activity relationship still remain significant challenges. Herein, three different and continuous tensile strains (CuPd-1.90%, CuAu-3.37%, and CuAg-4.33%) are successfully induced by introducing heteroatoms with different atomic radius. The catalytic performances of CuPd-1.90%, CuAu-3.37%, and CuAg-4.33% display a positive correlation against tensile strains in electrochemical CO2 reduction reaction (CO2RR). Specifically, CuAg-4.33% exhibits superior catalytic performance with a 77.9% Faradaic efficiency of multi-carbon products at −300 mA cm−2 current density, significantly higher than those of pristine Cu (Cu-0%). Theoretical calculations and in situ spectroscopies verify that tensile strain can affect the d-band center of Cu, thereby altering the binding energy of *CO intermediates and Gibbs free energies of the C–C coupling procedure. This work might highlight a new method for precisely regulating the lattice strain of metallic catalysts in different electrocatalytic reactions.
期刊介绍:
Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.