Machine learning-driven design of dual-band antennas using PGGAN and enhanced feature mapping

IF 1.1 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Lung-Fai Tuen, Ching-Lieh Li, Yu-Jen Chi, Chien-Ching Chiu, Po Hsiang Chen
{"title":"Machine learning-driven design of dual-band antennas using PGGAN and enhanced feature mapping","authors":"Lung-Fai Tuen,&nbsp;Ching-Lieh Li,&nbsp;Yu-Jen Chi,&nbsp;Chien-Ching Chiu,&nbsp;Po Hsiang Chen","doi":"10.1049/mia2.12534","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a systematic antenna design methodology that integrates machine learning, leveraging the progressive growth technique of Progressive Growing of GANs (PGGAN) to generate images of various dual-band PIFA-like antenna structures. The process involves using data augmentation methods to generate 4180 antenna samples. In the latent space, the authors employ Latin Hypercube Sampling to maintain diversity and combine it with the Hough Transform to enhance the edge features of the antennas while providing labelling functionality. This labelling method strengthens the relationship between antenna frequency and wavelength characteristics. The paper clearly outlines the design process, starting from the simulation of two types of single-frequency PIFA-like antennas (2.45 and 5.2 GHz, respectively) to the completion of PGGAN's generation task, resulting in a novel dual-band Wi-Fi PIFA-like antenna structure. The measurement results of the dual-band antennas exhibit excellent consistency with the simulation results.</p>","PeriodicalId":13374,"journal":{"name":"Iet Microwaves Antennas & Propagation","volume":"18 12","pages":"1113-1138"},"PeriodicalIF":1.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/mia2.12534","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Microwaves Antennas & Propagation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/mia2.12534","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a systematic antenna design methodology that integrates machine learning, leveraging the progressive growth technique of Progressive Growing of GANs (PGGAN) to generate images of various dual-band PIFA-like antenna structures. The process involves using data augmentation methods to generate 4180 antenna samples. In the latent space, the authors employ Latin Hypercube Sampling to maintain diversity and combine it with the Hough Transform to enhance the edge features of the antennas while providing labelling functionality. This labelling method strengthens the relationship between antenna frequency and wavelength characteristics. The paper clearly outlines the design process, starting from the simulation of two types of single-frequency PIFA-like antennas (2.45 and 5.2 GHz, respectively) to the completion of PGGAN's generation task, resulting in a novel dual-band Wi-Fi PIFA-like antenna structure. The measurement results of the dual-band antennas exhibit excellent consistency with the simulation results.

Abstract Image

基于PGGAN和增强特征映射的双频天线机器学习驱动设计
本文提出了一种集成机器学习的系统天线设计方法,利用gan的渐进式生长技术(PGGAN)来生成各种双频类pifa天线结构的图像。该过程涉及使用数据增强方法生成4180个天线样本。在潜在空间中,作者采用拉丁超立方体采样来保持多样性,并将其与霍夫变换相结合,以增强天线的边缘特征,同时提供标记功能。这种标记方法加强了天线频率和波长特性之间的关系。本文明确概述了设计过程,从仿真两种类型的单频类pifa天线(分别为2.45 GHz和5.2 GHz)到完成PGGAN的生成任务,得到了一种新颖的双频Wi-Fi类pifa天线结构。双频天线的测量结果与仿真结果具有良好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iet Microwaves Antennas & Propagation
Iet Microwaves Antennas & Propagation 工程技术-电信学
CiteScore
4.30
自引率
5.90%
发文量
109
审稿时长
7 months
期刊介绍: Topics include, but are not limited to: Microwave circuits including RF, microwave and millimetre-wave amplifiers, oscillators, switches, mixers and other components implemented in monolithic, hybrid, multi-chip module and other technologies. Papers on passive components may describe transmission-line and waveguide components, including filters, multiplexers, resonators, ferrite and garnet devices. For applications, papers can describe microwave sub-systems for use in communications, radar, aerospace, instrumentation, industrial and medical applications. Microwave linear and non-linear measurement techniques. Antenna topics including designed and prototyped antennas for operation at all frequencies; multiband antennas, antenna measurement techniques and systems, antenna analysis and design, aperture antenna arrays, adaptive antennas, printed and wire antennas, microstrip, reconfigurable, conformal and integrated antennas. Computational electromagnetics and synthesis of antenna structures including phased arrays and antenna design algorithms. Radiowave propagation at all frequencies and environments. Current Special Issue. Call for papers: Metrology for 5G Technologies - https://digital-library.theiet.org/files/IET_MAP_CFP_M5GT_SI2.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信