Design of an efficient dynamic context-based privacy policy deployment model via dual bioinspired Q learning optimisations

IF 1.7 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Namrata Jiten Patel, Ashish Jadhav
{"title":"Design of an efficient dynamic context-based privacy policy deployment model via dual bioinspired Q learning optimisations","authors":"Namrata Jiten Patel,&nbsp;Ashish Jadhav","doi":"10.1049/cps2.12100","DOIUrl":null,"url":null,"abstract":"<p>A novel context-based privacy policy deployment model enhanced with bioinspired Q-learning optimisations is presented. The model addresses the challenge of maintaining privacy while ensuring data integrity and usability in various settings. Leveraging datasets including Adult (Census Income), Yelp, UC Irvine Machine Learning, and Movie Lens, the authors evaluate the model's performance against state-of-the-art techniques, such as GEF AL, Deep Forest, and Robust Continual Learning. The approach employs Firefly Optimiser (FFO) and Ant Lion Optimiser (ALO) algorithms to dynamically adjust privacy parameters and handle large datasets efficiently. Additionally, Q-learning enables intelligent decision-making and rapid adaptation to changing data and network conditions and scenarios. Evaluation results demonstrate that the model consistently outperforms reference techniques across multiple metrics, including privacy levels, scalability, fidelity, and sensitivity management. By reducing reputational harm, minimising delays, and enhancing network quality, the model offers robust privacy protection without sacrificing data utility. Overall, a dynamic context-based privacy policy deployment approach, enhanced with bioinspired Q-learning optimisations, presents a significant advancement in privacy preservation methods. The combination of ALO, FFO, and Q-learning techniques offers a practical solution to evolving data privacy challenges and enhances flexibility in various use case scenarios.</p>","PeriodicalId":36881,"journal":{"name":"IET Cyber-Physical Systems: Theory and Applications","volume":"9 4","pages":"477-496"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cps2.12100","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cyber-Physical Systems: Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cps2.12100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

A novel context-based privacy policy deployment model enhanced with bioinspired Q-learning optimisations is presented. The model addresses the challenge of maintaining privacy while ensuring data integrity and usability in various settings. Leveraging datasets including Adult (Census Income), Yelp, UC Irvine Machine Learning, and Movie Lens, the authors evaluate the model's performance against state-of-the-art techniques, such as GEF AL, Deep Forest, and Robust Continual Learning. The approach employs Firefly Optimiser (FFO) and Ant Lion Optimiser (ALO) algorithms to dynamically adjust privacy parameters and handle large datasets efficiently. Additionally, Q-learning enables intelligent decision-making and rapid adaptation to changing data and network conditions and scenarios. Evaluation results demonstrate that the model consistently outperforms reference techniques across multiple metrics, including privacy levels, scalability, fidelity, and sensitivity management. By reducing reputational harm, minimising delays, and enhancing network quality, the model offers robust privacy protection without sacrificing data utility. Overall, a dynamic context-based privacy policy deployment approach, enhanced with bioinspired Q-learning optimisations, presents a significant advancement in privacy preservation methods. The combination of ALO, FFO, and Q-learning techniques offers a practical solution to evolving data privacy challenges and enhances flexibility in various use case scenarios.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Cyber-Physical Systems: Theory and Applications
IET Cyber-Physical Systems: Theory and Applications Computer Science-Computer Networks and Communications
CiteScore
5.40
自引率
6.70%
发文量
17
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信