Chiemeka L. Maxwell, Zixiang Wang, Dongsheng Yu, Marek Pastor, Samson S. Yu, Mohammed Alkahtani
{"title":"A memristor-sourced key for encrypted power and data synchronous transmission in switched mode power supplies","authors":"Chiemeka L. Maxwell, Zixiang Wang, Dongsheng Yu, Marek Pastor, Samson S. Yu, Mohammed Alkahtani","doi":"10.1049/pel2.12827","DOIUrl":null,"url":null,"abstract":"<p>In power and data synchronous transmission (PDST), it is crucial to modulate additional signals onto the voltage bus of the converters. This reduces the cost of monitoring and control of the power grid. There is thus the need to ensure that the data transmitted is well secured. This study, designs an electronic system that uses the common coupling point for PDST. Then Chua's memristive circuit is introduced as an entropy source for generating a random bit sequence for encrypted PDST in a switched mode power supply. The encrypted data signal is modulated using phase shift key modulation. Thereafter, the carrier signal is pulse width modulation modulated to control the switching operation of the power switch. The use of Chua's memristive circuit for generating a random number is not new; however, there is little study directly adopting its use in PDST. This allows for resource sharing since multiple signal sources can share the same bus without interference or security risk. The generated random bits are tested for randomness using National Institute of Standards and Technology test suite and autocorrelation test. MATLAB/Simulink and experimental results both confirm the effectiveness of the proposed data encryption method.</p>","PeriodicalId":56302,"journal":{"name":"IET Power Electronics","volume":"17 16","pages":"3093-3108"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12827","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12827","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In power and data synchronous transmission (PDST), it is crucial to modulate additional signals onto the voltage bus of the converters. This reduces the cost of monitoring and control of the power grid. There is thus the need to ensure that the data transmitted is well secured. This study, designs an electronic system that uses the common coupling point for PDST. Then Chua's memristive circuit is introduced as an entropy source for generating a random bit sequence for encrypted PDST in a switched mode power supply. The encrypted data signal is modulated using phase shift key modulation. Thereafter, the carrier signal is pulse width modulation modulated to control the switching operation of the power switch. The use of Chua's memristive circuit for generating a random number is not new; however, there is little study directly adopting its use in PDST. This allows for resource sharing since multiple signal sources can share the same bus without interference or security risk. The generated random bits are tested for randomness using National Institute of Standards and Technology test suite and autocorrelation test. MATLAB/Simulink and experimental results both confirm the effectiveness of the proposed data encryption method.
期刊介绍:
IET Power Electronics aims to attract original research papers, short communications, review articles and power electronics related educational studies. The scope covers applications and technologies in the field of power electronics with special focus on cost-effective, efficient, power dense, environmental friendly and robust solutions, which includes:
Applications:
Electric drives/generators, renewable energy, industrial and consumable applications (including lighting, welding, heating, sub-sea applications, drilling and others), medical and military apparatus, utility applications, transport and space application, energy harvesting, telecommunications, energy storage management systems, home appliances.
Technologies:
Circuits: all type of converter topologies for low and high power applications including but not limited to: inverter, rectifier, dc/dc converter, power supplies, UPS, ac/ac converter, resonant converter, high frequency converter, hybrid converter, multilevel converter, power factor correction circuits and other advanced topologies.
Components and Materials: switching devices and their control, inductors, sensors, transformers, capacitors, resistors, thermal management, filters, fuses and protection elements and other novel low-cost efficient components/materials.
Control: techniques for controlling, analysing, modelling and/or simulation of power electronics circuits and complete power electronics systems.
Design/Manufacturing/Testing: new multi-domain modelling, assembling and packaging technologies, advanced testing techniques.
Environmental Impact: Electromagnetic Interference (EMI) reduction techniques, Electromagnetic Compatibility (EMC), limiting acoustic noise and vibration, recycling techniques, use of non-rare material.
Education: teaching methods, programme and course design, use of technology in power electronics teaching, virtual laboratory and e-learning and fields within the scope of interest.
Special Issues. Current Call for papers:
Harmonic Mitigation Techniques and Grid Robustness in Power Electronic-Based Power Systems - https://digital-library.theiet.org/files/IET_PEL_CFP_HMTGRPEPS.pdf