Employing Deep Neural Networks and High-Throughput Computing for the Recognition and Prediction of Vein-Like Structures

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Junbo Niu, Zhiyu Chi, Feilong Wang, Bin Miao, Jiaxu Guo, ZhiFeng Ding, Yin He, XinXin Ma
{"title":"Employing Deep Neural Networks and High-Throughput Computing for the Recognition and Prediction of Vein-Like Structures","authors":"Junbo Niu,&nbsp;Zhiyu Chi,&nbsp;Feilong Wang,&nbsp;Bin Miao,&nbsp;Jiaxu Guo,&nbsp;ZhiFeng Ding,&nbsp;Yin He,&nbsp;XinXin Ma","doi":"10.1002/aisy.202400260","DOIUrl":null,"url":null,"abstract":"<p>In this investigation, convolutional neural networks (CNNs) are leveraged to engineer a simple segmentation and recognition algorithm specialized for the delineation of complex, network-like morphologies—often termed “vein-like structures (VLSs)”—in scanning electron microscopy (SEM) imagery. These intricate formations frequently appear during the nitriding treatment of medium- to high-carbon alloy steels. To navigate the multifaceted characteristics of such architectures, CNN-based methodologies are synergized with high-throughput thermodynamic computations via Thermo-Calc. This integration aims to quantify both the theoretical upper bounds and the actual values of the VLSs. By establishing deep neural network models for both theoretical upper bounds and actual measurements, the gap between thermodynamics and thermokinetics in the nitriding process is bridged. Applying this amalgamated predictive schema to 8Cr4Mo4V steel, a groundbreaking departure from conventional paradigms that exclusively depend on thermodynamic calculation-based diffusion models is effectuated. The emergent model yields transformative implications for the metallurgical sector, paving the way for the refinement of future nitriding algorithms and enhancements in nitriding methodologies.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 12","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400260","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this investigation, convolutional neural networks (CNNs) are leveraged to engineer a simple segmentation and recognition algorithm specialized for the delineation of complex, network-like morphologies—often termed “vein-like structures (VLSs)”—in scanning electron microscopy (SEM) imagery. These intricate formations frequently appear during the nitriding treatment of medium- to high-carbon alloy steels. To navigate the multifaceted characteristics of such architectures, CNN-based methodologies are synergized with high-throughput thermodynamic computations via Thermo-Calc. This integration aims to quantify both the theoretical upper bounds and the actual values of the VLSs. By establishing deep neural network models for both theoretical upper bounds and actual measurements, the gap between thermodynamics and thermokinetics in the nitriding process is bridged. Applying this amalgamated predictive schema to 8Cr4Mo4V steel, a groundbreaking departure from conventional paradigms that exclusively depend on thermodynamic calculation-based diffusion models is effectuated. The emergent model yields transformative implications for the metallurgical sector, paving the way for the refinement of future nitriding algorithms and enhancements in nitriding methodologies.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信