Feature selection and data-driven model for predicting the remaining useful life of lithium-ion batteries

IF 1.6 Q4 ENERGY & FUELS
Yuhao Zhang, Yunfei Han, Tao Cai, Jia Xie, Shijie Cheng
{"title":"Feature selection and data-driven model for predicting the remaining useful life of lithium-ion batteries","authors":"Yuhao Zhang,&nbsp;Yunfei Han,&nbsp;Tao Cai,&nbsp;Jia Xie,&nbsp;Shijie Cheng","doi":"10.1049/esi2.12171","DOIUrl":null,"url":null,"abstract":"<p>To ensure long and reliable operation of lithium-ion battery storage workstations, accurate, fast, and stable lifetime prediction is crucial. However, due to the complex and interrelated ageing mechanisms of Li-ion batteries, using physical model-based methods for accurate description is challenging. Therefore, building data-driven models based on direct measurement data (voltage, current, capacity, etc.) during battery operation may be a more effective approach. This paper employs a time series analysis of discharge capacity/voltage curves to perform feature predication. The goal is to predict the state of health using a short-term model and the remaining useful life of batteries using a long-term iterative model. The validity of this method is verified using the open-source MIT battery dataset. Comparisons with models reported in the literature demonstrate that this method is generalisable and ensures accuracy across a wider range of predictions.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"6 S1","pages":"776-788"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12171","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Energy Systems Integration","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/esi2.12171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

To ensure long and reliable operation of lithium-ion battery storage workstations, accurate, fast, and stable lifetime prediction is crucial. However, due to the complex and interrelated ageing mechanisms of Li-ion batteries, using physical model-based methods for accurate description is challenging. Therefore, building data-driven models based on direct measurement data (voltage, current, capacity, etc.) during battery operation may be a more effective approach. This paper employs a time series analysis of discharge capacity/voltage curves to perform feature predication. The goal is to predict the state of health using a short-term model and the remaining useful life of batteries using a long-term iterative model. The validity of this method is verified using the open-source MIT battery dataset. Comparisons with models reported in the literature demonstrate that this method is generalisable and ensures accuracy across a wider range of predictions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Energy Systems Integration
IET Energy Systems Integration Engineering-Engineering (miscellaneous)
CiteScore
5.90
自引率
8.30%
发文量
29
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信