Classification of Vaginal Cleanliness Grades through Surface-Enhanced Raman Spectral Analysis via The Deep-Learning Variational Autoencoder–Long Short-Term Memory Model

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Jia-Wei Tang, Xin-Ru Wen, Hui-Min Chen, Jie Chen, Kun-Hui Hong, Quan Yuan, Muhammad Usman, Liang Wang
{"title":"Classification of Vaginal Cleanliness Grades through Surface-Enhanced Raman Spectral Analysis via The Deep-Learning Variational Autoencoder–Long Short-Term Memory Model","authors":"Jia-Wei Tang,&nbsp;Xin-Ru Wen,&nbsp;Hui-Min Chen,&nbsp;Jie Chen,&nbsp;Kun-Hui Hong,&nbsp;Quan Yuan,&nbsp;Muhammad Usman,&nbsp;Liang Wang","doi":"10.1002/aisy.202470059","DOIUrl":null,"url":null,"abstract":"<p><b>Deep-Learning-Guided Surface-Enhanced Raman Spectroscopy</b>\n </p><p>In article number 2400587, Muhammad Usman, Liang Wang, and co-workers present a novel approach combining deep-learning-guided surface-enhanced Raman spectroscopy (SERS) and a variational autoencoder (VAE) with a long short-term memory (LSTM) neural network to classify vaginal cleanliness levels rapidly and accurately. Enhanced spectral quality and an optimized VAE–LSTM model yielded an 85% accuracy on blind test data. This method, which improves signal-to-noise ratios and diagnostic efficiency, shows strong potential for clinical applications in assessing vaginal cleanliness through SERS analysis of vaginal secretions.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 12","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202470059","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202470059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Deep-Learning-Guided Surface-Enhanced Raman Spectroscopy

In article number 2400587, Muhammad Usman, Liang Wang, and co-workers present a novel approach combining deep-learning-guided surface-enhanced Raman spectroscopy (SERS) and a variational autoencoder (VAE) with a long short-term memory (LSTM) neural network to classify vaginal cleanliness levels rapidly and accurately. Enhanced spectral quality and an optimized VAE–LSTM model yielded an 85% accuracy on blind test data. This method, which improves signal-to-noise ratios and diagnostic efficiency, shows strong potential for clinical applications in assessing vaginal cleanliness through SERS analysis of vaginal secretions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信