{"title":"Improvement of EME accuracy based on an equivalent voltage acquisition method and corresponding voltage compensation strategy","authors":"Mingyu Wang, Beining Yang, Yaru Qin, Guanglin Dong","doi":"10.1049/pel2.12828","DOIUrl":null,"url":null,"abstract":"<p>It is a known cost-effective method to employ a DSP-based electric machine emulator (EME) for motor control unit testing, this paper introduces a novel approach to enhance the emulator's accuracy. The inaccuracies caused by terminal voltage sampling errors in the motor control unit and voltage distortions in the inverter are addressed in this paper. An advanced equivalent voltage acquisition technique, which samples the duty cycle-amplitude of the inverter's terminal voltage, is developed. Leveraging the acquired equivalent voltage data, a novel voltage compensation strategy that providing more accuracy in EME performance is proposed. The mathematical foundation of the EME is established using Kirchhoff's voltage and current laws. These findings are independently validated through simulations and experiments. The results provide robust evidence that the proposed equivalent voltage acquisition and compensation strategies can enhance the accuracy of the EME.</p>","PeriodicalId":56302,"journal":{"name":"IET Power Electronics","volume":"17 16","pages":"3109-3119"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12828","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12828","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
It is a known cost-effective method to employ a DSP-based electric machine emulator (EME) for motor control unit testing, this paper introduces a novel approach to enhance the emulator's accuracy. The inaccuracies caused by terminal voltage sampling errors in the motor control unit and voltage distortions in the inverter are addressed in this paper. An advanced equivalent voltage acquisition technique, which samples the duty cycle-amplitude of the inverter's terminal voltage, is developed. Leveraging the acquired equivalent voltage data, a novel voltage compensation strategy that providing more accuracy in EME performance is proposed. The mathematical foundation of the EME is established using Kirchhoff's voltage and current laws. These findings are independently validated through simulations and experiments. The results provide robust evidence that the proposed equivalent voltage acquisition and compensation strategies can enhance the accuracy of the EME.
期刊介绍:
IET Power Electronics aims to attract original research papers, short communications, review articles and power electronics related educational studies. The scope covers applications and technologies in the field of power electronics with special focus on cost-effective, efficient, power dense, environmental friendly and robust solutions, which includes:
Applications:
Electric drives/generators, renewable energy, industrial and consumable applications (including lighting, welding, heating, sub-sea applications, drilling and others), medical and military apparatus, utility applications, transport and space application, energy harvesting, telecommunications, energy storage management systems, home appliances.
Technologies:
Circuits: all type of converter topologies for low and high power applications including but not limited to: inverter, rectifier, dc/dc converter, power supplies, UPS, ac/ac converter, resonant converter, high frequency converter, hybrid converter, multilevel converter, power factor correction circuits and other advanced topologies.
Components and Materials: switching devices and their control, inductors, sensors, transformers, capacitors, resistors, thermal management, filters, fuses and protection elements and other novel low-cost efficient components/materials.
Control: techniques for controlling, analysing, modelling and/or simulation of power electronics circuits and complete power electronics systems.
Design/Manufacturing/Testing: new multi-domain modelling, assembling and packaging technologies, advanced testing techniques.
Environmental Impact: Electromagnetic Interference (EMI) reduction techniques, Electromagnetic Compatibility (EMC), limiting acoustic noise and vibration, recycling techniques, use of non-rare material.
Education: teaching methods, programme and course design, use of technology in power electronics teaching, virtual laboratory and e-learning and fields within the scope of interest.
Special Issues. Current Call for papers:
Harmonic Mitigation Techniques and Grid Robustness in Power Electronic-Based Power Systems - https://digital-library.theiet.org/files/IET_PEL_CFP_HMTGRPEPS.pdf