Mechanochromic Suction Cups for Local Stress Detection in Soft Robotics

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Goffredo Giordano, Rob Bernardus Nicolaas Scharff, Marco Carlotti, Mariacristina Gagliardi, Carlo Filippeschi, Alessio Mondini, Antonio Papangelo, Barbara Mazzolai
{"title":"Mechanochromic Suction Cups for Local Stress Detection in Soft Robotics","authors":"Goffredo Giordano,&nbsp;Rob Bernardus Nicolaas Scharff,&nbsp;Marco Carlotti,&nbsp;Mariacristina Gagliardi,&nbsp;Carlo Filippeschi,&nbsp;Alessio Mondini,&nbsp;Antonio Papangelo,&nbsp;Barbara Mazzolai","doi":"10.1002/aisy.202400254","DOIUrl":null,"url":null,"abstract":"<p>Advancements in smart soft materials are enhancing the capabilities of robotic manipulators in object interactions and complex tasks. Mechanochromic materials, acting as lightweight sensors, offer easily interpretable visual feedback for localized stress detection, structural health monitoring, and energy-efficient robotic skins. Herein, an innovative mechanochromic soft end-effector capable of discerning local contact stresses during mechanical interactions with objects is presented and their relative position is ascertained. This system utilizes a reversible force-induced color switch in a thin layer of spiropyran-functionalized polydimethylsiloxane, which coats a silicone-made suction cup. The mechanochromic suction cup is integrated with a 3D-printed compact load-transferring system and electronic color-changing detection elements. The assembly may serve as a synthetic receptor for robotic actuators, discerning localized interaction forces down to 3 N. The system's resilience to varying environmental factors, including illumination, tilting, and interaction with objects of various shapes is verified. The results indicate potential for exteroceptive solutions in reconfigurable manipulation tasks without compromising the overall softness of the manipulator.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 12","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400254","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Advancements in smart soft materials are enhancing the capabilities of robotic manipulators in object interactions and complex tasks. Mechanochromic materials, acting as lightweight sensors, offer easily interpretable visual feedback for localized stress detection, structural health monitoring, and energy-efficient robotic skins. Herein, an innovative mechanochromic soft end-effector capable of discerning local contact stresses during mechanical interactions with objects is presented and their relative position is ascertained. This system utilizes a reversible force-induced color switch in a thin layer of spiropyran-functionalized polydimethylsiloxane, which coats a silicone-made suction cup. The mechanochromic suction cup is integrated with a 3D-printed compact load-transferring system and electronic color-changing detection elements. The assembly may serve as a synthetic receptor for robotic actuators, discerning localized interaction forces down to 3 N. The system's resilience to varying environmental factors, including illumination, tilting, and interaction with objects of various shapes is verified. The results indicate potential for exteroceptive solutions in reconfigurable manipulation tasks without compromising the overall softness of the manipulator.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信